Exotic behaviors of $\Omega_{c}(\mathbf{1 P})$ under the unquenched model

罗肆强
2021年5月18日

Based on［Phys．Rev．D 103， 074027 （2021）］
Cooperators：Bing Chen，Xiang Liu，and Takayuki Matsuki

Outline

1. Background
2. The interpretation of the $D_{s 0}^{*}$ (2317) under the unquenched model
3. The masses of $\Omega_{\boldsymbol{c}}(\mathbf{1 P})$ with the coupled-channel effect
4. Summary

1. Background

The conventional quenched quark model has achieved great successes in hadron physics. But it is difficult to interpret the masses of $D_{s 0}^{*}(2317)$, $D_{s 1}^{\prime}(2460), X(3872), \Lambda_{c}(2940)$, et al.

	$D_{s 0}^{*}(2317)$	$D_{s 1}^{\prime}(2460)$	$X(3872)$	$\Lambda_{c}(2940)$
PDG [1] (MeV)	2317.8 ± 0.5	2459.5 ± 0.6	3871.69 ± 0.17	$2939.6_{-1.5}^{+1.3}$
potential model $[2-4](\mathrm{MeV})$	2484	2556	3950	3035

The experimental measurements are about 100 MeV less than the potential model calculations.
[1] PTEP 2020, 083C01 (2020)
[3] Phys. Rev. D 93, 034035 (2016)
[2] Phys. Rev. D 32, 189 (1985)
[4] Phys. Rev. D 34, 2809 (1986)

In order to understand the masses of $D_{s 0}^{*}(2317), D_{s 1}^{\prime}(2460), X(3872)$, $\Lambda_{c}(2940)$, et al., the coupled-channel effect was introduced in hadron physics.

Coupled-channel effects of hadrons.
The hadron loops could affect the masses of hadrons.

$$
m=m_{0}+\delta m
$$

Charmed-strange meson
Charmed-strange baryon

2. The interpretation of the $D_{s 0}^{*}(2317)$ under the unquenched model

(1) Making the calculations for Ω_{c} more reliable;
(2) Determining the parameters in the model.

In the unquenched model, the physical state of $D_{s 0}^{*}(2317)$ could be denoted as

The full Hamiltonian of the physical $D_{s 0}^{*}(2317)$ state could be written as

$$
\hat{H}=\left(\begin{array}{cc}
\hat{H}_{0} & \hat{H}_{I} \\
\hat{H}_{I} & \hat{H}_{D K}
\end{array}\right) .
$$

The \widehat{H}_{0} is the Hamiltonian of the bare state with

$$
\begin{gathered}
\widehat{H}_{0}\left|c \bar{s}\left(1^{3} P_{0}\right)\right\rangle=M_{0}\left|c \bar{s}\left(1^{3} P_{0}\right)\right\rangle . \\
\text { bare mass }
\end{gathered}
$$

The \widehat{H}_{I} is the Hamiltonian of $c \bar{s}\left(1^{3} P_{0}\right) \rightarrow D K$ with

$$
\begin{aligned}
& \mathcal{M}_{c \bar{s}\left(1^{3} P_{0}\right) \rightarrow D K}(p)=\langle D K, \mathbf{p}| \hat{H}_{I}\left|c \bar{s}\left(1^{3} P_{0}\right)\right\rangle . \\
& \text { amplitude }
\end{aligned}
$$

Without including the interaction of D and K, the Hamiltonian of the intermediate $D K$ channel could be obtained by

$$
\hat{H}_{D K}|D K, \mathbf{p}\rangle=\left(\sqrt{m_{D}^{2}+p^{2}}+\sqrt{m_{K}^{2}+p^{2}}\right)|D K, \mathbf{p}\rangle .
$$

Then, one could obtain the coupled-channel equation

$$
M-M_{0}-\Delta M(M)=0 .
$$

The $\Delta M(M)$ is the mass shift with definition

$$
\Delta M(M)=\operatorname{Re} \int_{0}^{\infty} p^{2} \mathrm{~d} p \frac{\left|\mathcal{M}_{c \overline{5}\left(1 P^{3} P_{0}\right) \rightarrow D K}(p)\right|^{2}}{M-\sqrt{M_{D}^{2}+p^{2}}-\sqrt{M_{K}^{2}+p^{2}}} .
$$

(1) M_{0} : nonrelativistic potential model
(2) $\mathcal{M}_{c \bar{s}\left(1^{1} P_{0}\right) \rightarrow D K}(p):$ QPC model

Nonrelativistic potential model:

$$
\begin{aligned}
& \hat{H}_{0}=\sum_{i=1}\left(m_{i}+\frac{p_{i}^{2}}{2 m_{i}}\right)+\sum_{i<j} V_{i j} \\
& V_{i j}=H_{i j}^{\mathrm{conf}}+H_{i j}^{\mathrm{hyp}}+H_{i j}^{\mathrm{so}(\mathrm{~cm})}+H_{i j}^{\mathrm{so}(\mathrm{p})}
\end{aligned}
$$

spin-independent terms:

$$
H_{i j}^{\mathrm{conf}}=-\frac{4}{3} \frac{\alpha_{s}}{r_{i j}}+b r_{i j}+C
$$

spin-dependent terms:

$$
\begin{aligned}
& H_{i j}^{\mathrm{hyp}}=\frac{4 \alpha_{s}}{3 m_{i} m_{j}}\left(\frac{8 \pi}{3} \mathbf{s}_{i} \cdot \mathbf{s}_{j} \tilde{\delta}(r)+\frac{1}{r_{i j}^{3}} S\left(\mathbf{r}_{i j}, \mathbf{s}_{i}, \mathbf{s}_{j}\right)\right) \\
& \tilde{\delta}(r)=\frac{\sigma^{3}}{\pi^{3 / 2}} \mathrm{e}^{-\sigma^{2} r^{2}} \quad S\left(\mathbf{r}_{i j}, \mathbf{s}_{i}, \mathbf{s}_{j}\right)=\frac{3 \mathbf{s}_{i} \cdot \mathbf{r}_{i j} \mathbf{s}_{j} \cdot \mathbf{r}_{i j}}{r_{i j}^{2}}-\mathbf{s}_{i} \cdot \mathbf{s}_{j} \\
& H_{i j}^{\mathrm{so}(\mathrm{~cm})}=\frac{4 \alpha_{s}}{3 r_{i j}^{3}}\left(\frac{1}{m_{i}}+\frac{1}{m_{j}}\right)\left(\frac{\mathbf{s}_{i}}{m_{i}}+\frac{\mathbf{s}_{j}}{m_{j}}\right) \cdot \mathbf{L} \\
& H_{i j}^{\mathrm{so(tp)}}=-\frac{1}{2 r_{i j}} \frac{\partial H_{i j}^{\text {conf }}}{\partial r_{i j}}\left(\frac{\mathbf{s}_{i}}{m_{i}^{2}}+\frac{\mathbf{s}_{j}}{m_{j}^{2}}\right) \cdot \mathbf{L}
\end{aligned}
$$

QPC model:

$$
\begin{aligned}
\hat{H}_{I}= & -3 \gamma \sum_{m}\langle 1, m ; 1,-m \mid 0,0\rangle \int \mathrm{d}^{3} \mathbf{p}_{i} \mathrm{~d}^{3} \mathbf{p}_{j} \delta\left(\mathbf{p}_{i}+\mathbf{p}_{j}\right) \\
& \times \mathcal{Y}_{1}^{m}\left(\frac{\mathbf{p}_{i}-\mathbf{p}_{j}}{2}\right) \omega_{0}^{(i, j)} \phi_{0}^{(i, j)} \chi_{1,-m}^{(i, j)} b_{i}^{\dagger}\left(\mathbf{p}_{i}\right) d_{j}^{\dagger}\left(\mathbf{p}_{j}\right)
\end{aligned}
$$

Parameters:

The parameters in potential model are fixed by the low-lying well established π, K, D, and D_{s} mesons. The γ value is determined by the width of $D_{S 2}^{*}(2573)$.
potential model:

$$
\begin{array}{rl}
m_{u / d}=0.370 \mathrm{GeV} & \alpha_{s}=0.578 \\
m_{s}=0.600 \mathrm{GeV} & b=0.144 \mathrm{GeV}^{2} \\
m_{c}=1.880 \mathrm{GeV} & \sigma=1.028 \mathrm{GeV} \\
& C=-0.685 \mathrm{GeV}
\end{array}
$$

QPC model:
$\gamma=4.1$

Numerical result:

The coupled channel effect plays an important role for $D_{S 0}^{*}(2317)$!

3. The masses of $\Omega_{c}(1 P)$ with the coupled-channel effect

[LHCb] Phys. Rev. Lett. 118, 182001 (2017)

[Belle] Phys. Rev. D 97, 051102 (2018)

It is a good chance for us to study excited Ω_{c}.

The Jacobi coordinates of a singly heavy flavor baryon.

$$
\begin{gathered}
\vec{\rho}=\vec{r}_{2}-\vec{r}_{1} \\
\vec{\lambda}=\vec{r}_{3}-\frac{m_{1} \vec{r}+m_{2} \vec{r}}{m_{1}+m_{2}}
\end{gathered}
$$

Basis in heavy quark symmetry:
$\left|s_{\ell}, L, j_{\ell}, J\right\rangle=\left|\left[\left[s_{\ell} \otimes L\right]_{j_{\ell}} \otimes s_{Q}\right]_{J}\right\rangle$
s_{ℓ} : spin of the light degree of freedom
L : orbital angular momentum of the light degree of freedom
j_{ℓ} : angular momentum of the light degree of freedom
s_{Q} : spin of the heavy quark

$$
\begin{gathered}
j_{\ell}\left(\Xi_{c}(1 S)\right)=0 \\
j_{\ell}\left(\Xi_{c}^{\prime}(1 S)\right)=1 \\
j_{\ell}\left(\Xi_{c}^{*}(1 S)\right)=1 \\
\\
j_{\ell}\left(\Omega_{c}(1 S)\right)=1 \\
j_{\ell}\left(\Omega_{c}^{*}(1 S)\right)=1
\end{gathered}
$$

$$
\lambda \text {-mode excite } \Omega_{c}(1 P)\left\{\begin{array}{l}
J^{P}=1 / 2^{-}\left\{\begin{array}{l}
j_{\ell}=0: \Omega_{c 0}\left(1 P, 1 / 2^{-}\right) \\
j_{\ell}=1: \Omega_{c 1}\left(1 P, 1 / 2^{-}\right)
\end{array}\right. \\
J^{P}=3 / 2^{-}\left\{\begin{array}{l}
j_{\ell}=1: \Omega_{c 1}\left(1 P, 3 / 2^{-}\right) \\
j_{\ell}=2: \Omega_{c 2}\left(1 P, 3 / 2^{-}\right)
\end{array}\right. \\
J^{P}=5 / 2^{-}: \quad j_{\ell}=2: \Omega_{c 2}\left(1 P, 5 / 2^{-}\right)
\end{array}\right.
$$

Application: strong decays

$$
\begin{array}{ll}
\begin{array}{l}
\text { singly heavy } \\
\text { flavor baryon }
\end{array} & \begin{array}{l}
\text { singly heavy } \\
\text { flavor baryon }
\end{array} \\
A\left(j_{\ell}, J, J_{Z}\right) \rightarrow & \begin{array}{c}
\text { light flavor } \\
\text { pseudoscalar meson }
\end{array} \\
& \\
\text { orbital angular momentum of } B C
\end{array}
$$

Typical decay channels:

$$
\begin{gathered}
\Sigma_{c} \rightarrow \Lambda_{c} \pi \\
\Xi_{c}^{*} \rightarrow \Xi_{c} \pi \\
\Xi_{c}(2965) \rightarrow \Lambda_{c} K
\end{gathered}
$$

In heavy quark symmetry, the angular momentum of the light degree of freedom is a conserved quantity in the strong decay process, i.e., $\left|j_{\ell}^{\prime}-l\right| \leq j_{\ell} \leq\left|j_{\ell}^{\prime}+l\right|$.

$$
\begin{aligned}
& H_{i j}^{\mathrm{conf}}=-\frac{2}{3} \frac{\alpha_{s}}{r_{i j}}+\frac{b}{2} r_{i j}+C \\
& H_{i j}^{\mathrm{hyp}}=\frac{2 \alpha_{s}}{3 m_{i} m_{j}}\left(\frac{8 \pi}{3} \mathbf{s}_{i} \cdot \mathbf{s}_{j} \tilde{\delta}(r)+\frac{1}{r_{i j}^{3}} S\left(\mathbf{r}_{i j}, \mathbf{s}_{i}, \mathbf{s}_{j}\right)\right) \\
& H_{i j}^{\mathrm{socm})}=\frac{2 \alpha_{s}}{3 r_{i j}^{3}}\left(\frac{\mathbf{r}_{i j} \times \mathbf{p}_{i} \cdot \mathbf{s}_{i}}{m_{i}^{2}}-\frac{\mathbf{r}_{i j} \times \mathbf{p}_{j} \cdot \mathbf{s}_{j}}{m_{j}^{2}}-\frac{\mathbf{r}_{i j} \times \mathbf{p}_{j} \cdot \mathbf{s}_{i}-\mathbf{r}_{i j} \times \mathbf{p}_{i} \cdot \mathbf{s}_{j}}{m_{i} m_{j}}\right) \\
& H_{i j}^{\mathrm{so(tp)}}=-\frac{1}{2 r_{i j}} \frac{\partial H_{i j}^{\mathrm{conf}}}{\partial r_{i j}}\left(\frac{\mathbf{r}_{i j} \times \mathbf{p}_{i} \cdot \mathbf{s}_{i}}{m_{i}^{2}}-\frac{\mathbf{r}_{i j} \times \mathbf{p}_{j} \cdot \mathbf{s}_{j}}{m_{j}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
m_{u / d} & =0.370 \mathrm{GeV} & & \\
m_{s} & =0.600 \mathrm{GeV} & & \sigma=1.028 \mathrm{GeV} \\
m_{c} & =1.880 \mathrm{GeV} & & C=-0.685 \mathrm{GeV} \\
\alpha_{s} & =0.578 & & \gamma=8.66 \\
b & =0.144 \mathrm{GeV}^{2} & &
\end{aligned}
$$

The mass spectrum of Ω_{c}.

The two $J^{P}=1 / 2^{-}$of $\Omega_{c}(1 P)$ states could be expanded by $\left|j_{\ell}=0,1 / 2^{-}\right\rangle$and $\left|j_{\ell}=1,1 / 2^{-}\right\rangle$with the relation

$$
\binom{\left.\frac{1}{2}^{-}\right\rangle_{1}}{\left.\frac{1}{2}^{-}\right\rangle_{2}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\left|j_{\ell}=0, \frac{1}{2}^{-}\right\rangle}{\left|j_{\epsilon}=1, \frac{1}{2}^{-}\right\rangle},
$$

where the θ is the mixing angle.

Then, the coupled-channel Schrödinger equation could be written as

$$
\left(\begin{array}{cccc}
M^{j_{\epsilon}=0} & \tilde{V}^{\text {spin }} & \int p^{2} \mathrm{~d} p\left\langle\Omega_{c 0}\right| \hat{H}_{I}\left|\Xi_{c} \bar{K}\right\rangle & 0 \\
\tilde{V}^{\text {spin }} & M^{j_{\epsilon}=1} & 0 & \int p^{2} \mathrm{~d} p\left\langle\Omega_{c}\right| \hat{H}_{I}\left|\Xi_{c}^{\prime} \bar{K}\right\rangle \\
\left\langle\Xi_{c} \bar{K}\right| \hat{H}_{I}\left|\Omega_{c 0}\right\rangle & 0 & H_{\Xi_{c} \bar{K}} & 0 \\
0 & \left\langle\Xi_{c}^{\prime} \bar{K}\right| \hat{H}_{I}\left|\Omega_{c 1}\right\rangle & 0 & H_{\Xi_{c}^{\prime} \bar{K}}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{\Xi_{c} \bar{K}} \\
c_{\Xi_{c}^{\prime} \bar{K}}
\end{array}\right)=M\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{\Xi_{c} \bar{K}} \\
c_{\Xi_{c}^{\prime} \bar{K}}
\end{array}\right) .
$$

$$
\begin{gathered}
\binom{M^{j_{\epsilon}=0}+\underset{\tilde{V}^{\text {spin }}}{\Delta M^{0}(M)}}{M^{j_{\epsilon}=1}+\Delta M^{1}(M)}\binom{c_{0}}{c_{1}}=M\binom{c_{0}}{c_{1}} \\
\Delta M^{0}(M)=\operatorname{Re} \int_{0}^{\infty} p^{2} \mathrm{~d} p \frac{\left|\mathcal{M}_{\Omega_{c 0} \rightarrow \Xi_{c} \bar{K}}(p)\right|^{2}}{M-\sqrt{M_{\Xi_{c}}^{2}+p^{2}}-\sqrt{M_{K}^{2}+p^{2}}} \\
\Delta M^{1}(M)=\operatorname{Re} \int_{0}^{\infty} p^{2} \mathrm{~d} p \frac{\left|\mathcal{M}_{\Omega_{c 1} \rightarrow \Xi_{c}(\bar{K}}(p)\right|^{2}}{M-\sqrt{M_{\Xi_{c}^{\prime}}^{2}+p^{2}}-\sqrt{M_{K}^{2}+p^{2}}}
\end{gathered}
$$

Numerical results:

(1) $\Omega_{c 0}^{d}\left(1 P, 1 / 2^{-}\right)$:
(The $j_{\ell}=0$ component is dominate.)

$$
\begin{gathered}
M_{0}=3042 \mathrm{MeV} \\
\hline \frac{97 \mathrm{MeV}}{} \\
M_{\text {phy }}=2945 \mathrm{MeV}
\end{gathered}
$$

The coupled-channel effect plays an important role for this state.
(2) $\quad \Omega_{c 1}^{d}\left(1 P, 1 / 2^{-}\right)$:
(The $j_{\ell}=1$ component is dominate.)

[Belle] Phys. Rev. D 102, 071103 (2020)

The Belle Collaboration observed P-wave excited states $\Xi_{c}(2790)^{0}$ and $\Xi_{c}(2815)^{0}$ via the radiative decay $\Xi_{c}^{0} \gamma$.

We suggest searching for more possible excited Ω_{c} states in $\Omega_{c}^{(*)} \gamma$.

The two $J^{P}=3 / 2^{-}$of $\Omega_{c}(1 P)$ states could be expanded by $\left|j_{\ell}=1,3 / 2^{-}\right\rangle$and $\left|j_{\ell}=2,3 / 2^{-}\right\rangle$with the relation

$$
\binom{\left|\frac{3}{2}-\right\rangle_{1}}{\left|\frac{3}{2}^{-}\right\rangle_{2}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\left|j_{\ell}=1, \frac{3}{2}^{-}\right\rangle}{\left|j_{\ell}=2, \frac{3}{2}^{-}\right\rangle} .
$$

Numerical results:

(1) $\Omega_{c 1}^{d}\left(1 P, 3 / 2^{-}\right): \quad M_{0}=3062 \mathrm{MeV}, \quad M_{\text {phy }}=3029 \mathrm{MeV}$
(2) $\Omega_{c 2}^{d}\left(1 P, 3 / 2^{-}\right): \quad M_{0}=3056 \mathrm{MeV}, \quad M_{\text {phy }}=3058 \mathrm{MeV}$

4. Summary

1. The mass of $D_{s 0}^{*}(2317)$ could be interpreted by the coupled-channel effect.
2. The mass of $J^{P}=1 / 2^{-} \Omega_{c}(1 P)$ with predominate $j_{\ell}=0$ is obviously affected by the coupled-channel effect.
3. We suggest searching for more possible excited Ω_{c} states in $\Omega_{c}^{(*)} \gamma$.

Thank you for attention.

