Measurement of the Born cross sections of $e^+e^- \rightarrow D_s^{*+}D_{sI}^-$ at BESIII

Tianyu Qi

Fudan University

Outline

- Motivation
- Data and MC samples
- Event Selection
- Background Analysis
- Main Fit
- Systematic Uncertainties
- Summary

Motivation

- * In recent years, many Y states with $J^{PC} = 1^{--}$ above the open charm threshold have been discovered.
- * In $e^+e^- \rightarrow Y \rightarrow \pi^+\pi^- J/\psi$ and $\pi^+\pi^-\psi(2S)$, events in $\pi^+\pi^-$ mass spectra tend to accumulate at the $f_0(980)$ nominal mass, which has an $s\bar{s}$ component. So, it is natural to search for Y states in $D_s \bar{D}_s$ meson spectrum.
- * Belle report the discovery of Y(4660) in the spectrum of $D_s^+ D_{s1}(2536)^-$.
- * BESIII has updated c.m.s. energy over 4.6 GeV. We can observe $D_s^{*+}D_{s0}^*(2317)^-$, $D_s^{*+}D_{s1}(2460)^-$, $D_s^{*+}D_{s1}(2536)^-$, and D_sD_{sJ} 's at BESIII.

Motivation

- * Using data from 4.47 GeV to 4.6 GeV, BESIII measured the cross section of $e^+e^- \rightarrow D_s^+D_{s1}(2460)^-$ and $D_s^{*+}D_{s1}(2460)^-$.
- * Using data at 4.6 GeV, BESIII measured the cross section of $e^+e^- \rightarrow D_s^+K^-\overline{D}^{(*)0}$, where $K^-\overline{D}^{(*)0}$ has a significant contribution from $D_{s1}(2536)^-$ and $D_{s2}^*(2573)^-$.

PRD 101, 112008 (2020)

CPC Vol. 43, No. 3 031001 (2019)

Data and MC samples

- * Data samples from 4.6 GeV to 4.7 GeV are used.
- * To determine detector efficiency and optimize event selection, we generated MC samples of $e^+e^- \rightarrow D_s^{*+}D_{sJ}^-$, where D_{sJ}^- includes $D_{s0}^*(2317)^-$, $D_{s1}(2460)^-$, and $D_{s1}(2536)^ (D_{s1}(2536)^-$ only at $\sqrt{s} \ge 4.66$ GeV), with $D_s^{*+} \rightarrow \gamma D_s^+$ and $D_s^+ \rightarrow K^+K^-\pi^+$. The $D_{sJ}^$ decays to all possible final states.
- Inclusive MC samples at 4.6 GeV and 4.68 GeV are used to check all possible backgrounds, which includes open charm and hadron processes.

\sqrt{s} (MeV)	Luminosity (pb ⁻¹)
4600	586.9 ± 3.9
4612	102.50 ± 0.29
4626	511.06 ± 1.45
4640	541.37 ± 1.54
4660	523.63 ± 1.49
4680	1643.38 ± 4.66
4700	526.20 ± 1.49

(2013, 2020)

Event Selection

- * We reconstruct a D_s^+ using $K^+K^-\pi^+$, and reconstruct a D_s^{*+} using γD_s^+ . Then we search for D_{sI}^- in D_s^{*+} recoil mass spectrum.
- * Charge conjugate mode is implied.
- Charged track selection:
 - * Closest approach to the beam axis $V_{xy} < 1 \text{ cm}, V_z < 10 \text{ cm};$
 - * Polar angle $|\cos \theta| < 0.93$.
- Particle ID
 - * Kaon: $Prob(K) > Prob(\pi)$ and Prob(K) > 0.001;
 - * Pion: $\operatorname{Prob}(\pi) > \operatorname{Prob}(K)$ and $\operatorname{Prob}(\pi) > 0.001$.
- * Require at least three good charged tracks and one good photon.
- * All combinations of $K^+K^-\pi^+$ which passed a vertex fit is kept.

Event Selection

- * In addition to BESIII common tracking and PID selection criteria, we perform a mass-constraint 2C kinematic fit to $D_s^+ \rightarrow K^+ K^- \pi^+$ and $D_s^{*+} \rightarrow \gamma D_s^+$ candidate, and require $\chi^2_{2C} < 10$ to suppress background.
- * We use $D_s^+ \to \phi(\to K^+K^-)\pi^+$ and $D_s^+ \to \overline{K}^{*0}(\to K^-\pi^+)\pi^-$ sub-modes to improve the ratio of signal over background. We require $|M(K^+K^-) - m_{\phi}| < 9 \text{ MeV}/c^2$ for $\phi\pi$ mode and $|M(K^-\pi^+) - m_{\overline{K}^{*0}}| < 84 \text{ MeV}/c^2$ for $K\pi$ mode (~3 σ).

Event Selection

- * The $\chi^2_{2C} < 10$ criteria is optimized using FOM value.
- * FOM = $\frac{s}{\sqrt{s+B}}$, where *s* stands for the expected number of observed signal yields, computed using signal MC samples, and *B* stands for the background event count from inclusive MC samples in the signal range.

Background Analysis

* We used the MC truth matching to check for combinatorial background from wrong combination. The distribution of D_s^{*+} recoil mass from these events is smooth.

Background analysis

- * For the background analysis, inclusive MC samples of open charm processes are used, where no $e^+e^- \rightarrow D_s^{*+}D_{sI}^-$ events are generated.
- * The $M_{D_s^{*+}}^{\text{rec}}$ distributions from inclusive MC samples are shown below, where $M_{D_s^{*+}}^{\text{rec}} = RM(\gamma K^+ K^- \pi^+) + M(\gamma K^+ K^- \pi^+) - m_{D_s^{*+}}$, in order to improve the D_s^{*+} resolution.
- * A maximum likelihood fit is performed to the $M_{D_s^{*+}}^{\text{rec}}$ distribution, where an Argus function is used for background, and MC-derived signal shapes are used. The fitted signal yields are consistent with zero.

Main Fit

Main Fit

\sqrt{s} (GeV)	$D_s^* D_{s0}^* (2317)^-$		$D_s^* D_{s1}(2460)^-$		$D_{s}^{*}D_{s1}(2536)^{-}$	
	significa nce	$\sigma_{\rm B}~({\rm pb})~(\sigma_{\rm U.L.})$	significa nce	σ_{B} (pb) ($\sigma_{\mathrm{U.L.}}$)	significa nce	$\sigma_{\rm B}~({\rm pb})~(\sigma_{\rm U.L.})$
4.6	1.4σ	$6.8^{+5.0}_{-4.8}$ (14.8)	7.1σ	$31.2 \pm 5.2 \pm 3.7$	-	-
4.612	1.2σ	$14.7^{+13.3}_{-12.0}$ (34.7)	2.5σ	$26.1^{+12.8}_{-11.5}$ (44.4)	-	-
4.626	3.6 <i>σ</i>	$19.3 \pm 5.8 \pm 2.0$	5.6σ	$29.1\pm6.0\pm2.6$	-	-
4.64	1.2σ	$6.0^{+5.2}_{-5.0}$ (14.1)	4.7σ	$22.8 \pm 5.6 \pm 2.3$	-	-
4.66	1.2σ	$5.8^{+5.3}_{-5.0}$ (14.1)	6.1σ	$31.1 \pm 6.0 \pm 2.7$	3.4σ	$13.4 \pm 4.4 \pm 1.7$
4.68	4.9 <i>σ</i>	$13.9 \pm 3.0 \pm 1.4$	11.0σ	$31.9 \pm 3.3 \pm 2.5$	10.1σ	$26.9 \pm 3.1 \pm 2.3$
4.7	2.7σ	$13.7^{+5.6}_{-5.4}$ (21.4)	5.8 <i>o</i>	$30.8 \pm 6.0 \pm 2.6$	7.0σ	$35.1 \pm 6.0 \pm 3.0$

The first uncertainties are statistical and the second are systematic. For the 90% C.L. upper limit, systematic uncertainties are included.

$$\sigma_B(e^+e^- \to D_s^{*+}D_{sJ}^-) = \frac{N_{\text{fit}}}{\mathscr{L}_{\text{int}}(1+\delta)(1+\delta^{\text{vp}})\varepsilon_{D_s^{*+}}\mathscr{B}(D_s^{*+} \to \gamma D_s^+)\mathscr{B}(D_s^+ \to K^+K^-\pi^+)}$$

Main Fit

The 90% upper limits are obtained using the likelihood curve:

$$\int_{0}^{N_{\text{U.L.}}} \mathcal{L}(x) dx = 0.9 \int_{0}^{\infty} \mathcal{L}(x) dx \, ,$$

* where x stands for the assumed yield of D_{sJ}^- signal and $\mathcal{L}(x)$ is the maximum likelihood of the fit.

Systematic Uncertainties

- * The systematic uncertainties are divided into two categories: multiplicative and additive.
- Multiplicative uncertainties include:
 - * PID and tracking;
 - * Photon detection;
 - * Statistic uncertainties of efficiencies;
 - * Kinematic fit;
 - * ISR factor;
 - * Vacuum polarization factor;
 - Luminosity;
 - * Intermediate branching fraction.
- Additive uncertainties (Fit related) include:
 - * D_{sJ}^- mass;
 - * Fit range;
 - * Background shape.

Systematic Uncertainties

- * For energy points with signal significance $< 3\sigma$, the systematic uncertainties are taken into account in two steps.
- First, we keep the most conservative upper limit among the additive systematic uncertainties.
- * Next, we convolve the likelihood curve with a Gaussian function representing the total multiplicative systematic uncertainties.

Summary

- * We observed $e^+e^- \rightarrow D_s^{*+}D_{s0}^*(2317)^-$, $D_s^{*+}D_{s1}(2460)^-$, and $D_s^{*+}D_{s1}(2536)^$ above 4.6 GeV, and the Born cross sections are measured. Upper limits where the signal significance $< 3\sigma$ are given. The error bars in the plot below only includes statistical errors.
- * The uncertainties are large, and no significant structures are observed.
- * Current: PubComm step, intended for PRD.
- * The analysis of $D_s^+ D_{sJ}^-$ is ongoing.

Thanks for listening!

Backup

Topo analysis

rowNo	decay tree	nEtrs
1	$e^+e^- ightarrow D^s D^{*+}_s, D^s ightarrow \pi^- K^+ K^-, D^{*+}_s ightarrow D^+_s \gamma, D^+_s ightarrow \pi^+ K^+ K^-$	8
2	$e^+e^- o D^{*+}_s D^{*-}_s, D^{*+}_s o D^+_s \gamma, D^{*-}_s o D^s \gamma, D^+_s o ho^+ \phi, D^s o \pi^- K^+ K^-, o^+ o \pi^0 \pi^+, \phi o K^+ K^-$	6
3	$e^+e^- o b_1^+K_1^{'0}ar{K}_1^{'-}, b_1^+ o \pi^+ \omega, K_1^{'0} o \pi^0K^*, ar{K}_1^{'-} o \pi^-ar{K}^*, \omega o \pi^0\pi^+\pi^-, \ K^* o \pi^-K^+, ar{K}^* o \pi^+K^-$	6
4	$e^+e^- o D^{*+}_s D^{*-}_s, D^{*+}_s o D^+_s \gamma, D^{*-}_s o D^s \gamma, D^+_s o \pi^+ K^+ K^-, D^s o ho^- \eta, onumber ho^- o \pi^0 \pi^-, \eta o \pi^0 \pi^0 \pi^0$	5
5	$e^+e^- o D^{*+}_s D^{*-}_s, D^{*+}_s o D^+_s \gamma, D^{*-}_s o D^s \gamma, D^+_s o ho^+ \eta, D^s o \pi^- K^+ K^-, o^+ o \pi^0 \pi^+, \eta o \pi^0 \pi^+ \pi^-$	5
6	$e^+e^- ightarrow D_s^{*+}D_s^{*-}, D_s^{*+} ightarrow D_s^+ \gamma, D_s^{*-} ightarrow D_s^- \gamma, D_s^+ ightarrow ar{K}^*K^{*+}, D_s^- ightarrow \pi^-K^+K^-, \ ar{K}^* ightarrow \pi^+K^-, K^{*+} ightarrow \pi^0K^+$	4
7	$e^+e^- o b_1^0 K_1^{'+} ar K_1^{'-}, b_1^0 o \pi^0 \omega, K_1^{'+} o \pi^+ K^*, ar K_1^{'-} o \pi^- ar K^*, \omega o \pi^0 \pi^+ \pi^-, \ K^* o \pi^- K^+, ar K^* o \pi^+ K^-$	4
8	$e^+e^- o b_1^- ar{K}_1^{'0} K_1^{'+}, b_1^- o \pi^- \omega, ar{K}_1^{'0} o \pi^0 ar{K}^*, K_1^{'+} o \pi^+ K^*, \omega o \pi^0 \pi^+ \pi^-, \ ar{K}^* o \pi^+ K^-, K^* o \pi^- K^+$	4
9	$e^+e^- o b_1^+ K_1^{'0} ar K_1^{'-}, b_1^+ o \pi^+ \omega, K_1^{'0} o \pi^- K^{*+}, ar K_1^{'-} o \pi^- ar K^*, \omega o \pi^0 \pi^+ \pi^-, onumber K^{*+} o \pi^0 K^+, ar K^* o \pi^+ K^-$	4
10	$e^+e^- ightarrow D^+_s D^{*-}_s, D^+_s ightarrow \pi^+ K^+ K^-, D^{*-}_s ightarrow D^s \gamma, D^s ightarrow \pi^- K^+ K^-$	4
11	$e^+e^- o D^{*+}_s D^{*-}_s, D^{*+}_s o D^+_s \gamma, D^{*-}_s o D^s \gamma, D^+_s o \pi^+ K^+ K^-, D^s o ho^- \phi, onumber ho^- o \pi^0 \pi^-, \phi o K^+ K^-$	4
12	$e^+e^- ightarrow D_s^{*+}D_s^{*-}, D_s^{*+} ightarrow D_s^+\gamma, D_s^{*-} ightarrow D_s^-\gamma, D_s^+ ightarrow \pi^+K^+K^-, D_s^- ightarrow ho^-\eta', onumber ho^- ightarrow \pi^0\pi^-, \eta' ightarrow \pi^+\pi^-\gamma^F$	4

Combined data sample

***** 6.9*σ*, 11.3*σ*, 6.3*σ*

