Measurement of the Born cross sections of $e^{+} e^{-} \rightarrow D_{S}^{*+} D_{S J}^{-}$at BESIII Tianyu Qi

Fudan University

Outline

* Motivation
* Data and MC samples
* Event Selection
* Background Analysis
* Main Fit
* Systematic Uncertainties
* Summary

Motivation

* In recent years, many Y states with $J^{P C}=1^{--}$above the open charm threshold have been discovered.
* In $e^{+} e^{-} \rightarrow Y \rightarrow \pi^{+} \pi^{-} J / \psi$ and $\pi^{+} \pi^{-} \psi(2 S)$, events in $\pi^{+} \pi^{-}$mass spectra tend to accumulate at the $f_{0}(980)$ nominal mass, which has an $s \bar{s}$ component. So, it is natural to search for Y states in $D_{S} \bar{D}_{S}$ meson spectrum.
* Belle report the discovery of $Y(4660)$ in the spectrum of $D_{S}^{+} D_{s 1}(2536)^{-}$.
* BESIII has updated c.m.s. energy over 4.6 GeV . We can observe $D_{s}^{*+} D_{s 0}^{*}(2317)^{-}$, $D_{s}^{*+} D_{s 1}(2460)^{-}$, $D_{s}^{*+} D_{s 1}(2536)^{-}$, and $D_{s} D_{s j}$'s at BESIII.

Belle, PRD 100, 111103 (2019)

Motivation

* Using data from 4.47 GeV to 4.6 GeV , BESIII measured the cross section of $e^{+} e^{-} \rightarrow D_{S}^{+} D_{S 1}(2460)^{-}$and $D_{S}^{*+} D_{s 1}(2460)^{-}$.
* Using data at 4.6 GeV , BESIII measured the cross section of $e^{+} e^{-} \rightarrow D_{s}^{+} K^{-} \bar{D}^{(*) 0}$, where $K^{-} \bar{D}^{(*) 0}$ has a significant contribution from $D_{S 1}(2536)^{-}$and $D_{s 2}^{*}(2573)^{-}$.

PRD 101, 112008 (2020)

CPC Vol. 43, No. 3031001 (2019)

Data and MC samples

* Data samples from 4.6 GeV to 4.7 GeV are used.
* To determine detector efficiency and optimize event selection, we generated MC samples of $e^{+} e^{-} \rightarrow D_{S}^{*+} D_{S J}^{-}$, where $D_{S J}^{-}$includes $D_{S 0}^{*}(2317)^{-}, D_{s 1}(2460)^{-}$, and $D_{s 1}(2536)^{-}$ ($D_{s 1}(2536)^{-}$only at $\sqrt{s} \geq 4.66 \mathrm{GeV}$), with $D_{s}^{*+} \rightarrow \gamma D_{s}^{+}$and $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$. The $D_{s J}^{-}$

$\sqrt{s}(\mathrm{MeV})$	Luminosity $\left(\mathrm{pb}^{-1}\right)$
4600	586.9 ± 3.9
4612	102.50 ± 0.29
4626	511.06 ± 1.45
4640	541.37 ± 1.54
4660	523.63 ± 1.49
4680	1643.38 ± 4.66
4700	526.20 ± 1.49

(2013, 2020) decays to all possible final states.

* Inclusive MC samples at 4.6 GeV and 4.68 GeV are used to check all possible backgrounds, which includes open charm and hadron processes.

Event Selection

* We reconstruct a D_{s}^{+}using $K^{+} K^{-} \pi^{+}$, and reconstruct a D_{s}^{*+} using γD_{s}^{+}. Then we search for $D_{s J}^{-}$in D_{s}^{*+} recoil mass spectrum.
* Charge conjugate mode is implied.
* Charged track selection:
* Closest approach to the beam axis $V_{x y}<1 \mathrm{~cm}, V_{z}<10 \mathrm{~cm}$;
* Polar angle $|\cos \theta|<0.93$.
* Particle ID
* Kaon: $\operatorname{Prob}(K)>\operatorname{Prob}(\pi)$ and $\operatorname{Prob}(K)>0.001$;
* Pion: $\operatorname{Prob}(\pi)>\operatorname{Prob}(K)$ and $\operatorname{Prob}(\pi)>0.001$.
* Require at least three good charged tracks and one good photon.
* All combinations of $K^{+} K^{-} \pi^{+}$which passed a vertex fit is kept.

Event Selection

* In addition to BESIII common tracking and PID selection criteria, we perform a mass-constraint 2 C kinematic fit to $D_{S}^{+} \rightarrow K^{+} K^{-} \pi^{+}$and $D_{S}^{*+} \rightarrow \gamma D_{S}^{+}$candidate, and require $\chi_{2 C}^{2}<10$ to suppress background.
* We use $D_{s}^{+} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \pi^{+}$and $D_{s}^{+} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \pi^{-}$sub-modes to improve the ratio of signal over background. We require $\left|M\left(K^{+} K^{-}\right)-m_{\phi}\right|<9 \mathrm{MeV} / c^{2}$ for $\phi \pi$ mode and $\left|M\left(K^{-} \pi^{+}\right)-m_{\bar{K}^{* 0}}\right|<84 \mathrm{MeV} / c^{2}$ for $K \pi$ mode $(\sim 3 \sigma)$.

Event Selection

* The $\chi_{2 C}^{2}<10$ criteria is optimized using FOM value.
* $\mathrm{FOM}=\frac{s}{\sqrt{s+B}}$, where s stands for the expected number of observed signal yields, computed using signal MC samples, and B stands for the background event count from inclusive MC samples in the signal range.

Background Analysis

* We used the MC truth matching to check for combinatorial background from wrong combination. The distribution of D_{S}^{*+} recoil mass from these events is smooth.

Background analysis

* For the background analysis, inclusive MC samples of open charm processes are used, where no $e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s J}^{-}$events are generated.
* The $M_{D_{s}^{\star+}}^{\text {rec }}$ distributions from inclusive MC samples are shown below, where $M_{D_{s}^{+}}^{\text {rec }}=R M\left(\gamma K^{+} K^{-} \pi^{+}\right)+M\left(\gamma K^{+} K^{-} \pi^{+}\right)-m_{D_{s}^{*+}}^{\text {, }}$, in order to improve the D_{s}^{*+} resolution.
* A maximum likelihood fit is performed to the $M_{D_{s}^{*}}^{\mathrm{rec}}$ distribution, where an Argus function is used for background, and MC-derived signal shapes are used. The fitted signal yields are consistent with zero.

Main Fit

Main Fit

$\sqrt{s}(\mathrm{GeV})$	$D_{s}^{*} D_{s 0}^{*}(2317)^{-}$		$D_{s}^{*} D_{s 1}(2460)^{-}$		$D_{s}^{*} D_{s 1}(2536)^{-}$	
	significa nce	$\sigma_{\mathrm{B}}(\mathrm{pb})\left(\sigma_{\text {U.L. }}\right)$	significa nce	$\sigma_{\mathrm{B}}(\mathrm{pb})\left(\sigma_{\text {U.L. }}\right)$	significa nce	$\sigma_{\mathrm{B}}(\mathrm{pb})\left(\sigma_{\text {U.L. }}\right)$
4.6	1.4σ	$6.8{ }_{-4.8}^{+5.0}$ (14.8)	7.1σ	$31.2 \pm 5.2 \pm 3.7$	-	-
4.612	1.2σ	$14.7_{-12.0}^{+13.3}$ (34.7)	2.5σ	26.1-11.5 (44.4)	-	-
4.626	3.6σ	$19.3 \pm 5.8 \pm 2.0$	5.6σ	$29.1 \pm 6.0 \pm 2.6$	-	-
4.64	1.2σ	$6.0{ }_{-5.0}^{+5.2}$ (14.1)	4.7σ	$22.8 \pm 5.6 \pm 2.3$	-	
4.66	1.2σ	$5.8{ }_{-5.0}^{+5.3}$ (14.1)	6.1σ	$31.1 \pm 6.0 \pm 2.7$	3.4σ	$13.4 \pm 4.4 \pm 1.7$
4.68	4.9σ	$13.9 \pm 3.0 \pm 1.4$	11.0σ	$31.9 \pm 3.3 \pm 2.5$	10.1σ	$26.9 \pm 3.1 \pm 2.3$
4.7	2.7σ	$13.7_{-5.4}^{+5.6}$ (21.4)	5.8σ	$30.8 \pm 6.0 \pm 2.6$	7.0σ	$35.1 \pm 6.0 \pm 3.0$

The first uncertainties are statistical and the second are systematic.
For the 90% C.L. upper limit, systematic uncertainties are included.

$$
\sigma_{B}\left(e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s J}^{-}\right)=\frac{N_{\mathrm{fit}}}{\mathscr{L}_{\mathrm{int}}(1+\delta)\left(1+\delta^{\mathrm{vp}}\right) \varepsilon_{D_{s}^{*+}} \mathscr{B}\left(D_{s}^{*+} \rightarrow \gamma D_{s}^{+}\right) \mathscr{B}\left(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)}
$$

Main Fit

* The 90% upper limits are obtained using the likelihood curve:

$$
\int_{0}^{N_{\mathrm{ULL}}} \mathcal{L}(x) d x=0.9 \int_{0}^{\infty} \mathcal{L}(x) d x
$$

* where x stands for the assumed yield of $D_{S J}^{-}$signal and $\mathcal{L}(x)$ is the maximum likelihood of the fit.

Systematic Uncertainties

* The systematic uncertainties are divided into two categories: multiplicative and additive.
* Multiplicative uncertainties include:
* PID and tracking;
* Photon detection;
* Statistic uncertainties of efficiencies;
* Kinematic fit;
* ISR factor;
* Vacuum polarization factor;
* Luminosity;
* Intermediate branching fraction.
* Additive uncertainties (Fit related) include:
* $D_{s J}^{-}$mass;
* Fit range;
* Background shape.

Systematic Uncertainties

* For energy points with signal significance $<3 \sigma$, the systematic uncertainties are taken into account in two steps.
* First, we keep the most conservative upper limit among the additive systematic uncertainties.
* Next, we convolve the likelihood curve with a Gaussian function representing the total multiplicative systematic uncertainties.

Summary

* We observed $e^{+} e^{-} \rightarrow D_{S}^{*+} D_{S 0}^{*}(2317)^{-}, D_{S}^{*+} D_{s 1}(2460)^{-}$, and $D_{S}^{*+} D_{s 1}(2536)^{-}$ above 4.6 GeV , and the Born cross sections are measured. Upper limits where the signal significance $<3 \sigma$ are given. The error bars in the plot below only includes statistical errors.
* The uncertainties are large, and no significant structures are observed.
* Current: PubComm step, intended for PRD.
* The analysis of $D_{s}^{+} D_{S J}^{-}$is ongoing.

Thanks for listening!

Backup

Topo analysis

rowNo	decay tree	nEtrs
1	$e^{+} e^{-} \rightarrow D_{s}^{-} D_{s}^{*+}, D_{s}^{-} \rightarrow \pi^{-} K^{+} K^{-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}$	8
2	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \rho^{+} \phi, D_{s}^{-} \rightarrow \pi^{-} K^{+} K^{-}, \\ \\ \rho^{+} \rightarrow \pi^{0} \pi^{+}, \phi \rightarrow K^{+} K^{-} \end{gathered}$	6
3	$\begin{gathered} e^{+} e^{-} \rightarrow b_{1}^{+} K_{1}^{\prime 0} \bar{K}_{1}^{\prime-}, b_{1}^{+} \rightarrow \pi^{+} \omega, K_{1}^{\prime 0} \rightarrow \pi^{0} K^{*}, \bar{K}_{1}^{\prime-} \rightarrow \pi^{-} \bar{K}^{*}, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-}, \\ K^{*} \rightarrow \pi^{-} K^{+}, \bar{K}^{*} \rightarrow \pi^{+} K^{-} \end{gathered}$	6
4	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}, D_{s}^{-} \rightarrow \rho^{-} \eta, \\ \rho^{-} \rightarrow \pi^{0} \pi^{-}, \eta \rightarrow \pi^{0} \pi^{0} \pi^{0} \end{gathered}$	5
5	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \rho^{+} \eta, D_{s}^{-} \rightarrow \pi^{-} K^{+} K^{-} \\ \rho^{+} \rightarrow \pi^{0} \pi^{+}, \eta \rightarrow \pi^{0} \pi^{+} \pi^{-} \end{gathered}$	5
6	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \bar{K}^{*} K^{*+}, D_{s}^{-} \rightarrow \pi^{-} K^{+} K^{-}, \\ \bar{K}^{*} \rightarrow \pi^{+} K^{-}, K^{*+} \rightarrow \pi^{0} K^{+} \end{gathered}$	4
7	$\begin{gathered} e^{+} e^{-} \rightarrow b_{1}^{0} K_{1}^{\prime+} \bar{K}_{1}^{\prime-}, b_{1}^{0} \rightarrow \pi^{0} \omega, K_{1}^{\prime+} \rightarrow \pi^{+} K^{*}, \bar{K}_{1}^{\prime-} \rightarrow \pi^{-} \bar{K}^{*}, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-} \\ K^{*} \rightarrow \pi^{-} K^{+}, \bar{K}^{*} \rightarrow \pi^{+} K^{-} \end{gathered}$	4
8	$\begin{gathered} e^{+} e^{-} \rightarrow b_{1}^{-} \bar{K}_{1}^{\prime 0} K_{1}^{\prime+}, b_{1}^{-} \rightarrow \pi^{-} \omega, \bar{K}_{1}^{\prime 0} \rightarrow \pi^{0} \bar{K}^{*}, K_{1}^{\prime+} \rightarrow \pi^{+} K^{*}, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-}, \\ \bar{K}^{*} \rightarrow \pi^{+} K^{-}, K^{*} \rightarrow \pi^{-} K^{+} \end{gathered}$	4
9	$\begin{gathered} e^{+} e^{-} \rightarrow b_{1}^{+} K_{1}^{\prime 0} \bar{K}_{1}^{\prime-}, b_{1}^{+} \rightarrow \pi^{+} \omega, K_{1}^{\prime 0} \rightarrow \pi^{-} K^{*+}, \bar{K}_{1}^{\prime-} \rightarrow \pi^{-} \bar{K}^{*}, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-} \\ K^{*+} \rightarrow \pi^{0} K^{+}, \bar{K}^{*} \rightarrow \pi^{+} K^{-} \end{gathered}$	4
10	$e^{+} e^{-} \rightarrow D_{s}^{+} D_{s}^{*-}, D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{-} \rightarrow \pi^{-} K^{+} K^{-}$	4
11	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}, D_{s}^{-} \rightarrow \rho^{-} \phi, \\ \\ \rho^{-} \rightarrow \pi^{0} \pi^{-}, \phi \rightarrow K^{+} K^{-} \end{gathered}$	4
12	$\begin{gathered} e^{+} e^{-} \rightarrow D_{s}^{*+} D_{s}^{*-}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma, D_{s}^{+} \rightarrow \pi^{+} K^{+} K^{-}, D_{s}^{-} \rightarrow \rho^{-} \eta^{\prime} \\ \rho^{-} \rightarrow \pi^{0} \pi^{-}, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma^{F} \end{gathered}$	4

Combined data sample

* $6.9 \sigma, 11.3 \sigma, 6.3 \sigma$

