

ROC curves, AUC's and alternatives in HEP event selection and in other domains

Andrea Valassi (IT-DI-LCG) Inter-Experimental LHC Machine Learning WG – 26th January 2018

Disclaimer: I last did physics analyses more than 15 years ago (mainly statistically-limited precision measurements and combinations – e.g. no searches)

A. Valassi – ROC curves and alternatives in HEP

Why and when I got interested in this topic

T. Blake at al., Flavours of Physics: the machine learning challenge for the search of $\tau \rightarrow \mu\mu\mu$ decays at LHCb (2015, unpublished). https://kaggle2.blob.core.windows.net/competitions/kaggle/4488/media/lhcb_description_official. pdf (accessed 15 January 2018)

The 2015 LHCb Kaggle ML Challenge

- <u>Event selection</u> in search for $\tau \rightarrow \mu \mu \mu$
- Classifier wins if it maximises a weighted ROC AUC
- Simplified for Kaggle real analysis uses CLs

Figure 3: Weights assigned to the different segments of the ROC curve for the purpose of submission evaluation. The x axis is the False Positive Rate (FPR), while the y axis is True Positive Rate (TPR).

- First time I saw an Area Under the Roc Curve (AUC)
- My reaction: what is this? is this relevant in HEP?
 - try to understand why the AUC was introduced in other scientific domains
 - review *common knowledge* for optimizing several types of HEP analyses

Questions for you – How extensively are AUC's used in HEP, particularly in event selection? Are there specific HEP problems where it can be shown that AUC's are relevant?

Spoiler! – What I will argue in this talk

- Different disciplines / problems \rightarrow different challenges \rightarrow different metrics
 - Tools from other domains \rightarrow assess their relevance before using them in HEP
- Most relevant metrics in HEP event selection: purity ρ and signal efficiency ϵ_s
 - "Precision and Recall" HEP closer to Information Retrieval than to Medicine
 - "True Negatives", ROCs and AUCs irrelevant in HEP event selection*
 - AUCs \rightarrow Higher not always better. Numerically, no relevant interpretation.
- HEP specificity: fits of differential distributions → binning / partitioning of data
 - local efficiency and purity in each bin \rightarrow more relevant than global averages of ρ, ϵ_s
 - scoring classifiers \rightarrow more useful for partitioning data than for imposing cuts
 - optimize statistical errors on parameter estimates \rightarrow metrics based on local $\rho_i{}^*\epsilon_{s,i}$
 - optimal partitioning: split into bins of uniform purity ρ_i and sensitivity $\frac{1}{s_i} \frac{\partial Si}{\partial \theta}$

* ROCs are relevant in particle-ID – but this is largely beyond the scope of this talk

Outline

- Introduction to binary classifiers: the confusion matrix, ROCs, AUCs, PRCs
- Binary classifier evaluation: domain-specific challenges and solutions
 - Overview of Diagnostic Medicine and Information Retrieval
 - A systematic analysis and summary of optimizations in HEP event selection
- Statistical error optimization in HEP parameter estimation problems
 - Information metrics and the effect of local efficiency and purity in binned fits
 - Optimal binning and the relevance of local purity
- Conclusions

Binary classifiers: the "confusion matrix"

- Data sample containing instances of two classes: Ntot = Stot + Btot
 - HEP: signal Stot = Ssel + Srej
 - HEP: background Btot = Bsel + Brej
- Discrete binary classifiers assign each instance to one of the two classes
 - HEP: classified as signal and selected Nsel = Ssel + Bsel
 - HEP: classified as background and rejected Nrej = Brej + Srej

	<u>true class</u> : P ositives + (HEP: signal)	<u>true class</u> : Negatives - (HEP: background)	
<u>classified as</u> : positives (HEP: selected)	True Positives (TP) (HEP: selected signal Ssel)	False Positives (FP) (HEP: selected bkg Bsel)	T. Fawcett, Introduction to ROC analysis, Pattern Recognition Letters 27 (2006) 861. doi:10.1016/ j.patrec.2005.10.010
<u>classified as</u> : negatives (HEP: rejected)	False Negatives (FN) (HEP: rejected signal Srej)	True Negatives (TN) (HEP: rejected bkg Brej)	

I will not discuss multi-class classifiers (useful in HEP particle-ID)

The confusion matrix about the confusion matrix...

Different domains \rightarrow focus on different concepts \rightarrow different terminologies

Discrete vs. Scoring classifiers – ROC curves

- Discrete classifiers \rightarrow either select or reject \rightarrow confusion matrix
- Scoring classifiers \rightarrow assign score D to each event (e.g. BDT)
 - ideally related to likelihood that event is signal or background (Neyman-Pearson) - from scoring to discrete: choose a threshold \rightarrow classify as signal if D>Dthr
- ROC curves describe how FPR(ε_b) and TPR(ε_s) are related when varying Dthr –used initially in radar signal detection and psychophysics (1940-50's)

W. W. Peterson, T. G. Birdsall, W. C. Fox, *The the-ory of signal detectability*, Transactions of the IRE Professional Group on Information Theory 4 (1954) 171. doi:10.1109/TIT.1954.1057460

W. P. Tanner, J. A. Swets, A decision-making theory of visual detection, Psychological Review 61 (1954), 401. doi:10.1037/h0058700 J. A. Swets, *Is There a Sensory Threshold?*, Science 134 (1961) 168. doi:10.1126/science.134.3473.168

J. A. Swets, W. P. Tanner, T. G. Birdsall, *Decision processes in perception*, Psychological Review 68 (1961) 301. doi:10.1037/h0040547

ROC and PRC (precision-recall) curves

- Different choice of ratios in the confusion matrix: $\epsilon_{s,}\epsilon_{b}$ (ROC) or ρ,ϵ_{s} (PRC)
- When Btot/Stot ("prevalence") varies \rightarrow PRC changes, ROC does not

Understanding domain-specific challenges

- Many domain-specific details \rightarrow but also general cross-domain questions:
 - -1. Qualitative imbalance?
 - Are the two classes equally relevant?
 - -2. Quantitative imbalance?
 - Is the prevalence of one class much higher?
 - -3. Prevalence known? Time invariance?
 - Is relative prevalence known in advance? Does it vary over time?
 - -4. Dimensionality? Scale invariance?
 - Are all 4 elements of the confusion matrix needed?

M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Information Processing and Management 45 (2009) 427. doi:10.1016/j.ipm.2009.03.002

- Is the problem invariant under changes of some of these elements?
- -5. Ranking? Binning?
 - Are all selected instances equally useful? Are they partitioned into subgroups?
- Point out properties of MED and IR, attempt a systematic analysis of HEP

Medical diagnostics (1) and ML research

H. Sox, S. Stern, D. Owens, H. L. Abrams, Assessment of Diagnostic Technology in Health Care: Rationale, Methods, Problems, and Directions, The National Academies Press (1989). doi:10.17226/1432

X. H. Zhou, D. K. McClish, N. A. Obuchowski, Statistical Methods in Diagnostic Medicine (Wiley, 2002). doi:10.1002/9780470317082

- Binary classifier optimisation goal: maximise "diagnostic accuracy"
 - patient / physician / society have different goals \rightarrow many possible definitions
- Most popular metric: "accuracy", or "probability of correct test result":

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = \pi_s \times TPR + (1 - \pi_s) \times TNR$$

on Knowledge Discovery and Data Mining (KDD-97), Newport Beach, USA (1997). https://aaai.org/Library/

Accuracy Estimation for Comparing Induction Algorithms,

'98), Madison, USA (1998). https://www.researchgate.net/

- Symmetric \rightarrow all patients important, both truly ill (TP) and truly healthy (TN)
- Also "by far the most commonly used metric" in ML research in the 1990s of Classifier Performance; Comparison Under Impre Detectability and Medi Lusted. Signal J. A. Swets, Measuring the accuracy of diagnostic systems,
- Science 240 (1988) 1285. doi:10.1126/science.3287615 DD/1997/kdd97-007.php Since the '90s → shift from ACC to ROC in the MED and ML fields F. J. Provost, T. Fawcett, R. Kohavi, The Case against
 - TPR (sensitivity) and TNR (specificity) studied separately Proc. 15th Int. Conf. on Machine Learning (ICML
 - solves ACC limitations (imbalanced or unknown prevalence rare diseases, epidemics)

Decision-Making, Science 171 (1971) 1217

- Evaluation often AUC-based \rightarrow two perceived advantages for MED and ML fields
 - AUC interpretation: "probability that test result of randomly chosen sick subject indicates greater suspicion than that of randomly chosen healthy subject"
 - ROC comparison without prior D_{thr} choice (prevalence-dependent D_{thr} choice)

A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 (1997) 1145. doi:10.1016/S0031-3203(96)00142-2

J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982) 29. doi:10.1148/radiology.143.1.7063747

Medical diagnostics (2) and ML research

- ROC and AUC metrics → currently widely used in the MED and ML fields

 Remember: moved because ROC better than ACC with imbalanced data sets
- Limitation: evidence that ROC not so good for <u>highly</u> imbalanced data sets – may provide an overly optimistic view of performance
 - PRC may provide a more informative assessment of performance in this case
 - PRC-based reanalysis of some data sets in life sciences has been performed
- Very active area of research \rightarrow other options proposed (CROC, cost models)
 - Take-away message: ROC and AUC not always the appropriate solutions

J. Davis, M. Goadrich, The relationship between Precision-Recall and ROC curves, Proc. 23rd Int. Conf. on Machine Learning (ICML '06), Pittsburgh, USA (2006). doi:10.1145/1143844.1143874 C. Drummond, R. C. Holte, Explicitly representing expected

cost: an alternative to ROC representation, Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining (KDD-00), Boston, USA (2000). doi:10.1145/347090.347126 D. J. Hand, Measuring classifier performance: a coherent alternative to the area under the ROC curve, Mach Learn (2009) 77: 103. doi:10.1007/s10994-009-5119-5 S. J. Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval, Bioinformatics 26 (2010) 1348. doi:10.1093/bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them), Briefings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008 H. He, E. A. Garcia, Learning from Imbalanced Data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263. doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, *The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets*, PLoS One 10 (2015) e0118432. doi:10.1371/journal.pone.0118432

Information Retrieval

- Qualitative distinction between "relevant" and "non-relevant" documents – also a very large quantitative imbalance
- Binary classifier optimisation goal: make users happy in web searches
 - minimise # relevant documents not retrieved \rightarrow maximise "recall" i.e. efficiency
 - minimise # of irrelevant documents retrieved \rightarrow maximise "precision" i.e. purity
 - retrieve the more relevant documents first \rightarrow ranking very important
 - maximise speed of retrieval
- IR-specific metrics to evaluate classifiers based on the PRC (i.e. on ε_s , ρ)
 - unranked evaluation \rightarrow e.g. F-measures $F_{\alpha} = \frac{1}{\alpha/\epsilon_s + (1-\alpha)/\rho}$
 - $\alpha \in [0,1]$ tradeoff between recall and precision \rightarrow equal weight gives $F1 = \frac{2\varepsilon_s \rho}{\varepsilon_s + \rho}$
 - ranked evaluation \rightarrow precision at k documents, mean average precision (MAP), ...
 - MAP approximated by the Area Under the PRC curve (AUCPR)

C. D. Manning, P. Raghavan, H. Schütze, *Introduction to Information Retrieval* (Cambridge University Press, 2008). https://nlp.stanford.edu/IR-book

NB: Many different of meanings of "Information"! IR (web documents), HEP (Fisher), Information Theory (Shannon)...

First (simplest) HEP example

- Measurement of a total cross-section σ_s in a counting experiment
- To minimize statistical errors: maximise ε_s*ρ (well-known since decades) – global efficiency ε_s=S_{sel}/S_{tot} and global purity ρ=S_{sel}/(S_{sel}+B_{sel}) – "1 single bin"

$$\frac{1}{(\Delta\sigma_s)^2} = \frac{1}{\sigma_s} \mathcal{L}\epsilon_s \rho = \frac{1}{\sigma_s^2} S_{\rm tot}\epsilon_s \rho$$

- To compare classifiers (red, green, blue, black): – in each classifier \rightarrow vary Dthr cut \rightarrow vary ϵ_s and ρ \rightarrow find maximum of $\epsilon_s^*\rho$ (choose "operating point") – chose classifier with maximum of $\epsilon_s^*\rho$ out of the four
- + $\epsilon_s^*\rho$: metric between 0 and 1
 - -qualitatively relevant: the higher, the better
 - numerically: fraction of Fisher information (1/error²) available after selecting
 - correct metric only for σ_s by counting! \rightarrow table with more cases on a next slide

Examples of issues with AUCs – crossing ROCs

- Choice of classifier easy if one ROC "dominates" another (higher TPR ∀FPR) – PRC "dominates" too, then – and of course AUC is higher, too
- Choice is less obvious if ROCs cross!
- Example: cross-section by counting
 - maximise product $\epsilon_{s}\rho \rightarrow$ i.e. minimise the statistical error $\Delta\sigma^{2}$
 - depending on S_{tot}/B_{tot}, a different classifier (green, red, blue) should be chosen
 - in two out of three scenarios, the classifier with the highest AUC is not the best
 - AUC is qualitatively irrelevant (higher is not always better)
 - AUC is quantitatively irrelevant (0.75, 0.90, so what? $\varepsilon_s \rho$ instead means 1/ $\Delta \sigma^2$...)

Binary classifiers in HEP

Binary classifier optimisation goal: maximise physics reach at a given budget

Tracking and particle-ID (event reconstruction) – e.g. fake track rejection → maximise identification of particles (all particles within each event are important)

Instances: tracks within one event, created by earlier reconstruction stage. \rightarrow P = real tracks, N = fake tracks (ghosts) \rightarrow goal: keep real tracks, reject ghosts \rightarrow TN = fake tracks identified as such and rejected: **TN are relevant** (IIUC...) [Optimisation: should translate tracking metrics into measurement errors in physics analyses]

Trigger \rightarrow maximise signal event throughput, within the computing budget – e.g. HLT

- Instances: events, from the earlier trigger stage (e.g. L0 hardware trigger)
- \rightarrow P = signal events, N = background events [per unit time: trigger rates]
- \rightarrow goal: *maximise retained signal efficiency* TP/(TP+FN) at a given trigger rate FP (as TP \ll FP)
- → TN = background events identified as such and rejected: TN are irrelevant
- → constraint: max HLT rate (from HLT throughput), whatever the input L0 rate is: *TN are ill-defined*

EVENT SELECTION – I WILL FOCUS ON THIS IN THIS TALK

Instances: events, from pre-selected data sets

- \rightarrow P = signal events, N = background events
- \rightarrow goal: *minimise measurement errors* or maximise significance in searches
- \rightarrow TN = background events identified as such and rejected: **TN are irrelevant**
 - → physics results independent of pre-selection or MC cuts: TN are ill-defined

Domain Property	Medical diagnostics	Information retrieval	HEP event selection
Qualitative class imbalance	<u>NO.</u> Healthy and ill people have "equal rights". <i>TN are relevant.</i>	YES. "Non-relevant" documents are a nuisance. TN are irrelevant.	YES. Background events are a nuisance. TN are irrelevant.
Quantitative class imbalance	From small to extreme. From common flu to very rare disease.	Generally very high. Only very few documents in a repository are relevant.	Generally extreme. Signal events are swamped in background events.
Varying or unknown prevalence π	<u>Varying and unknown.</u> Epidemics may spread.	<u>Varying and unknown</u> in general (e.g. WWW).	<u>Constant in time</u> (quantum cross-sections). <u>Unknown</u> for searches. <u>Known</u> for precision measurements.
Dimensionality and invariances M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Infor- mation Processing and Management 45 (2009) 427. doi:10.1016/j.ipm.2009.03.002	<u>3 ratios ε_s, ε_b, π + scale.</u> New metrics under study because ROC ignores π. Costs scale with N _{tot.}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>2 ratios ε_s, ρ + scale.</u> ε _s , ρ enough in many cases. Lumi is needed for: trigger, syst. vs stat., searches. <i>TN are irrelevant</i> .
Different use of selected instances	Binning – NO. Ranking – YES? Treat with higher priority patients who are more likely to be ill?	Binning – NO. <u>Ranking – YES.</u> Precision at k, R-precision, MAP all involve <u>global</u> precision-recall ("top N _{sel} documents retrieved)	Binning – YES. Fits to distributions: <u>local ε_s, ρ in each bin</u> rather than global ε _s , ρ.

Different HEP problems → Different metrics

Binary classifiers for HEP event selection (signal-background discrimination)

	Cross-section (1-bin counting)	ant	2 variables: global ϵ_s , ρ (given S_{tot})	Maximise $S_{tot}^* \epsilon_s^* \rho$ (at any $S_{tot}^{}$)
Statistical error minimization (or statistical significance maximization)	Searches (1-bin counting)	<mark>V, AUC irrelev</mark> a	Simple and CCGV – 2 variables: global S_{sel} , B_{sel} (or equivalently ϵ_s , ρ)	Maximise $\frac{S_{sel}}{\sqrt{S_{sel}+Bsel}}$ (i.e. $\sqrt{S_{tot}*\epsilon_s*\rho}$)
				Maximise $\sqrt{2((S_{sel} + Bsel)\log(1 + \frac{S_{sel}}{B_{sel}}) - Ssel)}$
			HiggsML – 2 variables: global S _{sel} , B _{sel}	Maximise $\sqrt{2((S_{sel} + Bsel + K)\log(1 + \frac{S_{sel}}{B_{sel} + K}) - Ssel)}$
			Punzi – 2 variables: global ϵ_s , B_{sel}	Maximise $\frac{\epsilon_s}{A/2 + \sqrt{B_{sel}}}$
	Cross-section (binned fits)	oal/local variables – 11	2 variables: local ε _{s,i} and ρ _i in each bin (given s _{tot,i} in each bin)	Maximise $\sum_i s_{tot,i}^* \epsilon_{s,i}^* \rho_i$ Partition in bins of equal ρ_i
	Parameter estimation (binned fits)			$\begin{array}{l} \text{Maximise} \sum_{i} s_{\text{tot},i} * \epsilon_{s,i} * \rho_{i} * (\frac{1}{S_{\text{tot},i}} \frac{\partial S_{\text{tot},i}}{\partial \theta})^{2} \\ \text{Partition in bins of equal } \rho_{i} * (\frac{1}{S_{\text{tot},i}} \frac{\partial S_{\text{tot},i}}{\partial \theta})^{2} \end{array}$
	Searches (binned fits)		3 variables: local s _{sel} , s _{tot} , s _{sel} in each bin (2 counts or ratios enough?)	Maximise a sum? *
Statistical + Systematic error minimization		or 3 glot	3 variables: ε _s , ρ, lumi (lumi: tradeoff stat. vs. syst.)	No universal recipe * (may use local S_{sel} , B_{sel} in side band bins)
Trigger optimization		Only 2 (2 variables: global $B_{sel}\!/time,$ global ϵ_{s}	Maximise ϵ_s at given trigger rate

Binary classifiers for HEP problems other than event selection

Tracking and Particle-ID optimizations	All 4 variables? * (NB: TN is relevant)	ROC relevant - is AUC relevant? *
Other? *	? *	? *

* Many open questions for further research

IML LHC – 26th January 2018

Predict and optimize statistical errors in binned fits

- Fit θ from a binned multi-dimensional distribution - expected counts $y_i = f(x_i, \theta) dx = \varepsilon_i^* s_i(\theta) + b_i \rightarrow depend on parameter \theta to fit$
- Statistical error related to Fisher information $\left| \Delta \hat{\theta} \right|^2 = \operatorname{var}(\hat{\theta}) \ge \frac{1}{\mathcal{I}_{\theta}} \left| \text{ (Cramer-Rao)} \right|$ - binned fit \rightarrow combine measurements in each bin, weighed by information
- Easy to show (backup slides) that Fisher information in the fit is:

 $\mathcal{I}_{\theta}^{(\text{real classifier})} = \sum_{i=1}^{m} \epsilon_i \rho_i \times \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta} \right)^2 \qquad \qquad \mathcal{I}_{\theta}^{(\text{ideal classifier})} = \sum_{i=1}^{m} \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta} \right)^2$

 $-\varepsilon_i$ and $\rho_i \rightarrow$ local signal efficiency and purity in the ith bin

 Define a binary classifier metric as information fraction to ideal classifier: - in $[0,1] \rightarrow 1$ if keep all signal and reject all backgrounds

- higher is better \rightarrow maximise IF - interpretation: $(\Delta \hat{\theta}^{(\text{real classifier})})^2 \ge \frac{1}{\text{IF}} (\Delta \hat{\theta}^{(\text{ideal classifier})})^2$

 $\text{IF} = \frac{\mathcal{I}_{\theta}^{(\text{real classifier})}}{\mathcal{I}_{\theta}^{(\text{ideal classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_i \rho_i \times \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2}{\sum_{i=1}^{m} \frac{1}{C_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2}$

NB: global $\varepsilon^* \rho$ is the IF for measuring $\theta = \sigma_s$ in a 1-bin fit (counting experiment)!

Numerical tests with a toy model

- I used a simple toy model to make some numerical tests
 - Verify that my formulas are correct and also illustrate them graphically
 - Two-dimensional distribution (m,D) \rightarrow signal Gaussian, background exponential
- Two measurements:
 - total cross-section measurement by counting and 1-D or 2-D fit
 - mass measurement by 1-D or 2-D fits
- · Details in the backup slides

M by 1D fit to m – optimizing the classifier

- Choose operating point D_{thr} optimizing information fraction for θ=M in m-fit – NB: different to operating point maximising ε*p (IF for θ=σ_s in a 1-bin fit)
- To compute IF as sum over bins \rightarrow need average $\frac{1}{s} \frac{\partial s}{\partial A}$ in each bin
 - proof-of-concept \rightarrow integrate by toy MC with event-by-event weight derivatives

• in a real MC, could save $\frac{1}{|\mathcal{M}|^2} \frac{\partial |\mathcal{M}|^2}{\partial \theta}$ for the matrix element squared $|\mathcal{M}|^2$

M by 1D fit to m – visual interpretation

• Information after cuts: $\sum_{i} \frac{1}{s_i} \left(\frac{\partial si}{\partial M}\right)^2 * \epsilon_{i*} \rho_i \rightarrow \text{show the 3 terms in each bin i}$

- fit = combine N different measurements in N bins \rightarrow local $\epsilon_{i,} \rho_{i}$ relevant!

Optimal partitioning – information inflow

- Information about θ in a binned fit $\rightarrow \mathcal{I}_{\theta} = \sum_{i=1}^{m} \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta} \right)^2$
- Do I gain anything by splitting bin y_i into two separate bins? $y_i = w_i + z_i$ - i.e. is the "information inflow"* positive? $\frac{1}{w_i} \left(\frac{\partial w_i}{\partial \theta}\right)^2 + \frac{1}{z_i} \left(\frac{\partial z_i}{\partial \theta}\right)^2 - \frac{1}{w_i + z_i} \left(\frac{\partial (w_i + z_i)}{\partial \theta}\right)^2 = \frac{\left(w_i \frac{\partial z_i}{\partial \theta} - z_i \frac{\partial w_i}{\partial \theta}\right)^2}{w_i z_i (w_i + z_i)} \ge 0$

- information increases (errors on parameters decrease) if $\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \neq \frac{1}{z_i} \frac{\partial z_i}{\partial \theta}$

- effect of the classifier \rightarrow information increases if $\rho_w \frac{1}{s_w} \frac{\partial s_w}{\partial \theta} \neq \rho_z \frac{1}{s_z} \frac{\partial s_z}{\partial \theta}$

- In summary: try to partition the data into bins of equal $\rho_i \frac{1}{s_i} \frac{\partial si}{\partial \theta}$
 - for cross-section measurements (and searches?): split into bins of equal ρ_i
 "use the scoring classifier D to partition the data, not to reject events"

Optimal partitioning – optimal variables

- The previous slide implies that $q = \rho \frac{1}{s} \frac{\partial s}{\partial \theta}$ is an optimal variable to fit for θ
 - proof of concept \rightarrow 1-D fit of q has the same precision on M as 2-D fit of (m,D)
 - closely related to the "optimal observables" technique

• In practice: train one ML variable to reproduce $\frac{1}{s} \frac{\partial s}{\partial \theta}$? – not needed for cross-sections or searches (this is constant)

M. Davier, L. Duflot, F. LeDiberder, A. Rougé, The optimal method for the measurement of tau polarization, Phys. Lett. B 306 (1993) 411. doi:10.1016/0370-2693(93)90101-M M. Diel, O. Nachtmann, Optimal observables for the mea-

Conclusion and outlook

• Different disciplines / problems \rightarrow different challenges \rightarrow different metrics

- there is no universal magic solution - and the AUC definitely is not one

- I proposed a systematic analysis of many problems in HEP event selection only
- True Negatives, ROCs & AUCs are irrelevant in HEP event selection PRC approach (like IR, unlike MED) more appropriate \rightarrow purity ρ , efficiency ϵ_s
- Binning in HEP analyses \rightarrow global averages of ρ , ϵ_s irrelevant in that case
 - FOM integrals that are relevant to HEP use local $\rho,\,\epsilon_s$ in each bin
 - AUC is an integral of global $\rho,\,\epsilon_s^{} \rightarrow$ one more reason why it is irrelevant
 - optimal partitioning exists to minimise statistical errors on fits
- What am I proposing about ROCs and AUCs, essentially?
 - stop using AUCs and ROCs in HEP event selection
 - \bullet ROCs confusing \rightarrow they make you think in terms of the wrong metrics
 - identify the metrics most appropriate to your specific problem
 - I summarized many metrics that exist for some problems in event selection
 - more research needed in other problems (e.g. pID, systematics in event selection...)

I am preparing a paper on this – thank you for your feedback in this meeting!

BACKUP SLIDES

A. Valassi – ROC curves and alternatives in HEP

IML LHC – 26th January 2018 25/24

Statistical error in binned fits

Observed data: event counts n_i in m bins of a (multi-D) distribution f(x)

- the expected counts $y_i = f(x_i, \theta) dx$ depend on a parameter θ that we want to fit

- [NB here f is a differential cross section, it is not normalized to 1 like a pdf]
- Fitting $\boldsymbol{\theta}$ is like combining the independent measurements in the m bins
 - expected error on n_i in bin x_i is $\Delta n_i = \sqrt{y_i}$ = $\sqrt{f(xi,\theta)}~dx$
 - expected error on $f(x_i, \theta)$ in bin x_i is $\Delta f = f * \Delta n_i/n_i = \sqrt{f / dx}$
 - expected error on estimated $\widehat{\theta}_{i}$ in bin \mathbf{x}_{i} is $\frac{1}{(\Delta \hat{\theta})^{2}_{(\text{bin } dx)}} = \left(\frac{\partial f}{\partial \theta}\right)^{2} \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} = \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} = \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} = \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} = \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} \left(\frac{\sqrt{dx}}{\sqrt{f}}\right)^{2} =$

- expected error on estimated $\hat{\theta}$ by combining the m bins is $\left(\frac{1}{\Delta\hat{\theta}}\right)^2 = \int \frac{1}{f} \left(\frac{\partial f}{\partial\theta}\right)^2 dx$

• A bit more formally, joint probability for observing the n_i is $P(\mathbf{n}; \theta) = \prod_{i=1}^{m} \frac{e^{-y_i} y_i^{n_i}}{n_i!}$ - Fisher information on θ from the data available is then

$$\mathcal{I}_{\theta} = E \left[\frac{\partial \log P(\mathbf{n}; \theta)}{\partial \theta} \right]^2 \quad \textbf{i.e.} \quad \mathcal{I}_{\theta} = \sum_{i=1}^m \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta} \right)^2 = \int \frac{1}{f} \left(\frac{\partial f}{\partial \theta} \right)^2 dx$$

- The minimum variance achievable (Cramer-Rao lower bound) is $(\Delta \hat{\theta})^2 = \operatorname{var}(\hat{\theta}) \ge \frac{1}{\mathcal{I}_{\theta}}$

Effect of realistic classifiers on fits

- Previous slide: variance on estimated $\hat{\theta}$ is $(\Delta \hat{\theta})^2 = \operatorname{var}(\hat{\theta}) \ge \frac{1}{\mathcal{I}_{\theta}}$ where $\mathcal{I}_{\theta} = \sum_{i=1}^{m} \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta}\right)^2$
- With an *ideal classifier*, all signal events and only signal events are selected, i.e. $y_i = S_i$, hence: $\mathcal{I}_{\theta}^{(\text{ideal classifier})} = \sum_{i=1}^m \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2$
- With a realistic classifier, only a fraction of all available signal events are selected, as well as some background events: $y_i(\theta) = \epsilon_i S_i(\theta) + b_i$
 - here ϵ_i is the *local signal efficiency* in bin x_i
 - note that $\frac{1}{y_i} = \rho_i \frac{1}{\epsilon_i S_i}$ where the *local signal purity* is defined as $\rho_i = \frac{s_i}{s_i + b_i}$
 - the available information is therefore reduced to $\mathcal{I}_{\theta}^{(\text{real classifier})} = \sum_{i=1}^{m} \epsilon_i \rho_i \times \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2$
- In summary, with respect to an ideal classifier, a realistic classifier leads to a higher error on the fitted parameter, $(\Delta \hat{\theta}^{(\text{real classifier})})^2 \ge \frac{1}{\text{IF}} (\Delta \hat{\theta}^{(\text{ideal classifier})})^2$
- "IF" is the "information fraction" available after cuts: $IF = \frac{\mathcal{I}_{\theta}^{(\text{real classifier})}}{\mathcal{I}_{\theta}^{(\text{ideal classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_i \rho_i \times \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2}{\sum_{i=1}^{m} \frac{1}{\sigma_i} \left(\frac{\partial S_i}{\partial \theta}\right)^2}$

Information fraction vs. AUC

- "IF" is a figure of merit between 0 and 1 (like the AUC...) IF = $\frac{\mathcal{I}_{\theta}^{(\text{real classifier})}}{\mathcal{I}_{\theta}^{(\text{ideal classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_{i} \rho_{i} \times \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}{\sum_{i=1}^{m} \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}$
 - it depends on efficiency and purity (PRC rather than ROC)
 - True Negatives are irrelevant...
 - it depends on local efficiencies and purities
 - but also applies to counting experiments (1 single "bin") see examples
 - it depends on the choice of a point on the PRC/ROC (a threshold on D)
 - but one can also use it in a fit to the full distribution of D see examples
 - it is qualitatively (higher is better) and quantitatively ($\Delta \hat{\theta} \sim 1/IF$) relevant
- A different figure of merit is needed for every different problem!
 - I derived this for statistical errors in parameter fits (precision measurements)
 - A similar f.o.m. can certainly be derived for optimizing searches
 - "combining" the different bins of the distribution is done slightly differently...
 - Systematic errors need to be handled differently...

Systematic errors

- Statistical errors $\propto \frac{1}{\sqrt{N}} \rightarrow$ systematics become more relevant as N grows
 - Minimise statistical errors at low N \rightarrow only depends on $\epsilon_s,\,\rho$
 - Minimise stat+syst errors at high N \rightarrow also depends on luminosity scale (S_{tot})
 - i.e. need all three numbers TP, FP, FN \rightarrow but TN remains irrelevant
- Simple example \rightarrow measure σ_s by counting, 1% relative uncertainty in σ_b – systematic error is lower than statistical error if $\left(\frac{1-\rho}{\sqrt{\rho}}\right) \leq \frac{1}{\sqrt{\epsilon_s S_{tot}}} \times \frac{1}{\Delta \sigma_b / \sigma_b}$

– optimizing total systematic + statistical error is a tradeoff involving ϵ_s , ρ , S_{tot}

 Complex problem, no universal recipe → interesting problem to work on! – more in-depth discussion is *beyond the scope of this talk*

- Different meaning of absolute numbers in the confusion matrix
 - Trigger \rightarrow events per unit time i.e. trigger rates
 - (Physics analyses \rightarrow total event sample sizes i.e. total integrated luminosities)
- Binary classifier optimisation goal: maximise ϵ_s for a given B_{sel} per unit time i.e. maximise TP/(TP+FN) for a given FP \rightarrow TN irrelevant
- Relevant plot $\rightarrow \epsilon_s vs. B_{sel}$ per unit time (i.e. *TPR vs FP*)
 - ROC curve (TPR vs. FPR) confusing and irrelevant
 - e.g. maximise ϵ_{s} for 4 kHz trigger rate, whether L0 rate is 1 MHz or 2MHz

Event selection in HEP searches

- Statistical error in searches by counting experiment \rightarrow "significance"
 - several metrics \rightarrow but optimization always involves ϵ_s , ρ alone \rightarrow TN irrelevant

$$Z_0 = \frac{S_{\rm sel}}{\sqrt{S_{\rm sel} + B_{\rm sel}}} \Longrightarrow \quad \overline{(Z_0)^2 = S_{\rm tot} \epsilon_s \rho}$$

 $- =
ho \left(1 +
ho + \mathcal{O}(
ho^2)
ight)$

Expansion in $\rho \ll 1$?– use

the expression for Z_2 if anything

 Z_0 – Not recommended? (confuses search with measuring σ_s once signal established)

 $(Z_2)^2 = 2S_{\text{tot}}\epsilon_s$

 $-\log(\frac{1}{1})$

C. Adam-Bourdarios et al., The Higgs Machine Learning Challenge, Proc. NIPS 2014 Workshop on High-Energy Physics and Machine Learning (HEPML2014), Montreal, Canada, PMLR 42 (2015) 19. http://proceedings.mlr.press/v42/cowa14.html

 Z_2 – Most appropriate? (also used as "AMS2" in Higgs ML challenge)

 $1 + \frac{2}{2}\rho + O(\rho^2)$

$$Z_2 = \sqrt{2\left(\left(S_{\rm sel} + B_{\rm sel}\right)\log(1 + \frac{S_{\rm sel}}{B_{\rm sel}}) - S_{\rm sel}\right)}$$

$$Z_3 = \frac{S_{\text{sel}}}{\sqrt{B_{\text{sel}}}} \implies \left[(Z_3)^2 = S_{\text{tot}} \epsilon_s \frac{\rho}{1-\rho} = S_{\text{tot}} \epsilon_s \rho \left(1+\rho + \mathcal{O}(\rho^2) \right) \right]$$

 Z_3 ("AMS3" in Higgs ML) – Most widely used, but strictly valid only as an approximation of Z_2 as an expansion in $S_{sel}/B_{sel} \ll 1$?

 $= S_{\rm tot} \epsilon_s \rho$

G. Punzi, Sensitivity of searches for new signals and its optimization, Proc. PhyStat2003, Stanford, USA (2003). arXiv:physics/0308063v2 [physics.data-an] G. Cowan, E. Gross, Discovery significance with statistical uncertainty in the background estimate, ATLAS Statistics Forum (2008, unpublished). http://www.pp.thul.ac.uk/~cowan/ stat/notes/SigCalcNote.pdf (accessed 15 January 2018) R. D. Cousins, J. T. Linnemann, J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nucl. Instr. Meth. Phys. Res. A 595 (2008) 480. doi:10.1016/j.nima.2008.07.086

 G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys.
 J. C 71 (2011) 15. doi:10.1140/epjc/s10052-011-1554-0

- Several other interesting open questions \rightarrow beyond the scope of this talk
 - optimization of systematics? \rightarrow e.g. see AMS1 in Higgs ML challenge
 - predict significance in a binned fit? \rightarrow integral over Z² (=sum of log likelihoods)?

Tracking and particle-ID

- ROCs irrelevant in event selection \rightarrow but relevant in other HEP problems
- Event reconstruction and particle identification
 - Binary classifiers on a set of components of one event \rightarrow not on a set of events
- Example: fake track rejection in LHCb
 - data set within one event: "track" objects created by the tracking software
 - True Positives: tracks that correspond to a charged particle trajectory in MC truth
 - True Negatives: tracks with no MC truth counterpart \rightarrow relevant and well defined
- Binary classifier evaluation: ϵ_s and ϵ_b both relevant \rightarrow ROC curve relevant
 - is AUC relevant? maximise physics performance? what if ROC curves cross?
 - these questions are beyond the scope of this talk

M. De Cian, S. Farry, P. Seyfert, S. Stahl, *Fast neuralnet based fake track rejection in the LHCb reconstruction*, LHCb Public Note LHCb-PUB-2017-011 (2017). https://cds.cern.ch/record/2255039

Simple toy model

- Signal (XS=100 fb): Gaussian peak in m, flat in D – mass M=1000 GeV, width W=20 GeV
 - flat in D $\rightarrow \epsilon_s = 1 D_{thr}$ if accept events with D>D_{thr}
- Background (XS=1000 fb): exponential in both m and D – cross-section 1000 fb \rightarrow B_{tot}=100k
- Two measurements (lumi=100 fb⁻¹ → S_{tot}=10k, B_{tot}=100k)
 mass fit → estimate Â (assuming XS, W)
 cross section fit → estimate XS (assuming M, W)
 counting, 1D and 2D fits, with/without cuts on D
- Compare binary classifier to ideal case (no bkg):
 - ideal case $\rightarrow \Delta \widehat{M} = W/\sqrt{S_{tot}} = 0.200 \text{ GeV}$
 - ideal case $\rightarrow \Delta \widehat{XS} = XS/\sqrt{S_{tot}} = 1.00 \text{ fb}$

Using scipy / matplotlib / numpy

and iminuit in Python from SWAN

M by 1D fit to m – optimizing the classifier

- Goal: fit true mass M from invariant mass m distribution after a cut on D – Vary $\epsilon_s=1-D_{thr}$ by varying cut $D_{thr} \rightarrow$ compute information fraction on M for $\epsilon_s \rightarrow$ maximum of information fraction: IF=0.62 ($\Delta \widehat{M}=0.254=\frac{0.200}{\sqrt{0.62}}$) at $\epsilon_s=0.78$
- Different measurements \rightarrow different metrics \rightarrow different optimizations – maximum of information for fit to M \rightarrow IF=0.62 ($\Delta \widehat{M}$ =0.254= $\frac{0.200}{\sqrt{0.62}}$) at ϵ_s =0.78 – maximum of information for XS by counting $\rightarrow \epsilon_s^*\rho$ =0.46 at ϵ_s =0.58
- To compute IF as sum over bins \rightarrow need average $\frac{1}{h} \frac{\partial h}{\partial M}$ in each bin - proof-of-concept \rightarrow integrate by toy MC with event-by-event weight derivatives

M by 1D fit to m – cross-check

• Cross-check fit error returned by iminuit \rightarrow repeat fit on 10k samples – check this only at the point of max information $\rightarrow \epsilon_s$ =0.78 and $\Delta \hat{M}$ =0.254

Cross-section by 1D fit to D

i.e. the common practice of "BDT fits"

- Cross-section fits analogous to mass fits but simpler
 - Differential cross-section proportional to total cross-section
 - $-\frac{1}{s_i}\frac{\partial s_i}{\partial \sigma_s} = \frac{1}{\sigma_s} \text{ is constant} \to \sum_i \frac{1}{s_i} \left(\frac{\partial s_i}{\partial \sigma_s}\right)^2 * \epsilon_{i*} \rho_i = \sum_i s_{i*} \epsilon_{i*} \rho_i$
 - special case : for a single bin (counting experiment) $S_{tot} * \epsilon * \rho \rightarrow maximise$ global $\epsilon * \rho$
- For simplicity show only fit in D (could fit m, or m and D) and no cuts
 - binning improves precision, also without cuts on D
 - use the scoring classifier D to partition data, not to reject events \rightarrow next slides

M by 2D fit – use classifier to partition, not to cut

- Showed a fit for M on m, after a cut on D → can also fit in 2-D with no cuts
 – again, use the scoring classifier D to partition data, not to reject events
- Why is binning so important, especially using a discriminating variable?
 next slide...

A. Valassi – ROC curves and alternatives in HEP

Optimal partitioning – optimal variables

- How to partition the data into bins of equal $\rho_i \frac{1}{s_i} \frac{\partial s_i}{\partial \sigma_i}$?
 - as a proof of concept \rightarrow also made a 1D fit for M against this one variable "q"
 - not surprisingly, the precision is the same as that of the 2D fit on m,D

• In practice: train one ML variable to reproduce $\frac{1}{s_i} \frac{\partial s_i}{\partial \sigma_s}$?

Same general idea as the "optimal observables" technique

M. Davier, L. Duflot, F. LeDiberder, A. Rougé, The optimal method for the measurement of tau polarization, Phys. Lett. B 306 (1993) 411. doi:10.1016/0370-2693(93)90101-M M. Diel, O. Nachtmann, Optimal observables for the measurement of three-gauge-boson couplings in e⁺e⁻ → W⁺W⁻, Z. Phys. C 62 (1994) 397. doi:10.1007/BF0155899 O. Nachtmann, F. Nagel, Optimal observables and phase-space ambiguities, Eur. Phys. J. C40 (2005) 497. doi:10.1140/epic/s2005-02153-9

A. Valassi – ROC curves and alternatives in HEP

OLDER SLIDES

A. Valassi – ROC curves and alternatives in HEP

IML LHC – 26th January 2018 39/24

HEP event selection properties

- Binary classifier optimisation goal: maximise physics reach at given budget
 - Trigger and computing \rightarrow maximise signal event throughput within constraints
 - Physics analyses \rightarrow maximise physics information from available data sets
- I will attempt a systematic analysis of properties:

M. Sokolova, G. Lapalme, A Systematic Analysis of Performance Measures for Classification Tasks, Information Processing and Management 45 (2009) 427. doi:10.1016/j.ipm.2009.03.002

- 1. Qualitative class imbalance \rightarrow signal relevant, background irrelevant
 - TN irrelevant and ill-defined (preselection, generator cuts) \rightarrow only TP, FP, FN matter
- -2. Extreme quantitative class imbalance \rightarrow signal events swamped in background
- -3. Prevalence largely constant in time \rightarrow fixed by quantum physics cross section
 - Prevalence: known in advance for precision measurements; unknown for searches.
- –4. Scale invariance (with two exceptions) \rightarrow optimization based on 2 ratios ϵ_s, ρ
 - Exception: trigger rate \rightarrow constraint on throughput of FP(+TP) per unit time
 - Exception: total error (statistical + systematic) minimization also depends on scale L
- 5. Fits to differential distributions \rightarrow local ϵ_s , ρ relevant (global ϵ_s , ρ ~irrelevant)
- More details and examples in the following slides

Medical diagnostics (1) – accuracy

- Binary classifier optimisation goal: maximise "diagnostic accuracy"
 - not obvious: many different specific goals \rightarrow many different possible definitions
 - patient's perspective \rightarrow minimise diagnostic impact and impact of no/wrong treatment
 - society's perspective: ethical and economic \rightarrow allocate healthcare with limited budget
 - physician's perspective \rightarrow get knowledge of patient's condition, manage patient

H. Sox, S. Stern, D. Owens, H. L. Abrams, Assessment of Diagnostic Technology in Health Care: Rationale, Methods, Problems, and Directions, The National Academies Press (1989). doi:10.17226/1432

• Most popular metric: "accuracy", or "probability of correct test result":

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = \pi_s \times TPR + (1 - \pi_s) \times TNR$$
X. H. Zhou, D. K. McClish, N. A. Obuchowski, *Sta-tistical Methods in Diagnostic Medicine* (Wiley, 2002).
doi:10.1002/9780470317082
where "prevalence" is
$$\pi_s = \frac{S_{tot}}{S_{tot} + B_{tot}}$$

• Symmetric \rightarrow all patients important, both truly ill (TP) and truly healthy (TN)

Medical diagnostics (2) – from ACC to ROC

- ACC metric → widely used in medical diagnostics in the 1980-'90s (still now?)
 Also "by far the most commonly used metric" in ML in the 1990s
- Limitation: ACC depends on relative prevalence
 - issue for imbalanced problems \rightarrow diagnostic accuracy for rare diseases
 - issue if prevalence unknown or variable over time \rightarrow disease epidemics
- Since the '90s \rightarrow shift from ACC to ROC in MED and ML fields $^{Accuracy Estimation for Comparing Induction Algorithms, Proc. 15th Int. Conf. on Machine Learning (ICML)$ '98, Madison, USA (1998). https://www.researchgate.net/publication/2373067
 - TPR (sensitivity) and TNR (specificity) studied separately
 - reminder: all patients important, both truly ill (TP) and truly healthy (TN) L. B. Lusted, Signal Detectability and Medical Decision-Making, Science 171 (1971) 1217 doi:10.1126/science.171.3977.1217

• Evaluation often based on the AUC \rightarrow two advantages for medical diagnostics:

- AUC interpretation: "probability that test result of randomly chosen sick subject indicates greater suspicion than that of randomly chosen healthy subject"
- ROC comparison without prior D_{thr} choice (prevalence-dependent D_{thr} choice)

A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 (1997) 1145. doi:10.1016/S0031-3203(96)00142-2

J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982) 29. doi:10.1148/radiology.143.1.7063747

A. Valassi – ROC curves and alternatives in HEP

F. J. Provost, T. Fawcett, R. Kohavi, The Case against

J. A. Swets, Measuring the accuracy of diagnostic systems,

Science 240 (1988) 1285. doi:10.1126/science.3287615

Medical diagnostics (3) – from ROC to PRC?

- ROC and AUC metrics \rightarrow currently widely used in medical diagnostics and ML
- Limitation: ROC-based evaluation questionable for *highly imbalanced data sets* ROC may provide an overly optimistic view of performance with highly skewed data sets
- PRC may provide a more informative assessment of performance in this case
 PRC-based reanalysis of some data sets in life sciences has been performed
- Very active area of research → other options proposed (CROC, cost models...)
 Take-away message: ROC and AUC not always the appropriate solutions

J. Davis, M. Goadrich, *The relationship between Precision-Recall and ROC curves*, Proc. 23rd Int. Conf. on Machine Learning (ICML '06), Pittsburgh, USA (2006). doi:10.1145/1143844.1143874

C. Drummond, R. C. Holte, *Explicitly representing expected* cost: an alternative to *ROC* representation, Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining (KDD-00), Boston, USA (2000). doi:10.1145/347090.347126

D. J. Hand, Measuring classifier performance: a coherent alternative to the area under the ROC curve, Mach Learn (2009) 77: 103. doi:10.1007/s10994-009-5119-5

S. J. Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval, Bioinformatics 26 (2010) 1348. doi:10.1093/bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them), Briefings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008 H. He, E. A. Garcia, Learning from Imbalanced Data, IEEE Trans. Knowl. Data Eng. 21 (2009) 1263. doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, *The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets*, PLoS One 10 (2015) e0118432. doi:10.1371/journal.pone.0118432

Simplest HEP example – total cross-section

- Total cross-section measurement in a counting experiment
- To minimize statistical errors: maximise efficiency *purity $\varepsilon_s * \rho$
 - well-known since decades
 - global efficiency $\epsilon_s = S_{sel}/S_{tot}$ and global purity $\rho = S_{sel}/(S_{sel}+B_{sel})$ "1 single bin"

- $\epsilon_s^*\rho$: metric between 0 and 1
 - -qualitatively relevant (only for this specific use case!): the higher, the better
 - numerically: fraction of Fisher information (1/error²) available after selecting

TPR (efficiency)

Predict and optimize statistical errors in binned fits

- Observed data: event counts n_i in m bins of a (multi-D) distribution f(x)

 expected counts y_i = f(x_i,θ)dx → depend on a parameter θ that we want to fit
 [NB here f is a differential cross section, it is not normalized to 1 like a pdf]
- Easy to show (backup slides) that minimum variance achievable is: $\begin{bmatrix} (\Delta \hat{\theta})^2 = \operatorname{var}(\hat{\theta}) \ge \frac{1}{\mathcal{I}_{\theta}} \end{bmatrix}$ (Cramer-Rao lower bound), where $\begin{bmatrix} \mathcal{I}_{\theta} = \sum_{i=1}^m \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta}\right)^2 = \int \frac{1}{f} \left(\frac{\partial f}{\partial \theta}\right)^2 dx$ (Fisher information)
- With an ideal classifier (or no background) $\rightarrow y_i = S_i$ and $\left| \mathcal{I}_{\theta}^{(\text{ideal classifier})} = \sum_{i=1}^m \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta} \right)^2 \right|$
- With a realistic classifier $\rightarrow y_i(\theta) = \epsilon_i S_i(\theta) + b_i$ and $\left| \mathcal{I}_{\theta}^{(\text{real classifier})} = \sum_{i=1}^{m} \epsilon_i \rho_i \times \frac{1}{S_i} \left(\frac{\partial S_i}{\partial \theta} \right)^2 \right|$

- ε_i and $\rho_i \rightarrow$ local signal efficiency and purity in the ith bin

- Binary classifier optimization → maximise
 higher is better
 - interpretation: $(\Delta \hat{\theta}^{(\text{real classifier})})^2 \ge \frac{1}{\text{IF}} (\Delta \hat{\theta}^{(\text{ideal classifier})})^2$

$$\mathrm{IF} = \frac{\mathcal{I}_{\theta}^{(\mathrm{real \ classifier})}}{\mathcal{I}_{\theta}^{(\mathrm{ideal \ classifier})}} = \frac{\sum_{i=1}^{m} \epsilon_{i} \rho_{i} \times \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}{\sum_{i=1}^{m} \frac{1}{S_{i}} \left(\frac{\partial S_{i}}{\partial \theta}\right)^{2}}$$

Optimal partitioning – information inflow

- Information about θ in a binned fit $\rightarrow \mathcal{I}_{\theta} = \sum_{i=1}^{m} \frac{1}{y_i} \left(\frac{\partial y_i}{\partial \theta} \right)^2$
- Do I gain anything by splitting bin y_i into two separate bins? $y_i = w_i + z_i$ - i.e. is the "information inflow" positive? $\frac{1}{w_i} \left(\frac{\partial w_i}{\partial \theta}\right)^2 + \frac{1}{z_i} \left(\frac{\partial z_i}{\partial \theta}\right)^2 - \frac{1}{w_i + z_i} \left(\frac{\partial (w_i + z_i)}{\partial \theta}\right)^2 = \frac{\left(w_i \frac{\partial z_i}{\partial \theta} - z_i \frac{\partial w_i}{\partial \theta}\right)^2}{w_i z_i (w_i + z_i)} \ge 0$

- information increases (errors on parameters decrease) if $\frac{1}{w_i} \frac{\partial w_i}{\partial \theta} \neq \frac{1}{z_i} \frac{\partial z_i}{\partial \theta}$

- Both w_i and z_i can be written as $f = \epsilon s + b = \frac{\epsilon s}{\rho} \rightarrow \frac{\partial f}{\partial \theta} = \epsilon \frac{\partial s}{\partial \theta} \rightarrow \frac{1}{f} \frac{\partial f}{\partial \theta} = \rho \frac{1}{s} \frac{\partial s}{\partial \theta}$
- In summary: try to partition the data into bins of equal $\rho_i \frac{1}{s_i} \frac{\partial s_i}{\partial \sigma_s}$
 - for cross-section measurements (and searches?): split into bins of equal ρ_i
 - "use the scoring classifier D to partition the data, not to reject events"
 - the BDT normally tries to represent a signal likelihood i.e. ultimately the real ρ_{i}

