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Disclaimer: | last did physics analyses more than 15 years ago
(mainly statistically-limited precision measurements and combinations — e.g. no searches)
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Why and when | got interested In this topic

T. Blake at al., Flavours of Physics: the machine learning
challenge for the search of 7 = ppp decays at LHCH
(2015, unpublished). https://kaggle2.blob.core.windows.net/

s competitions/kaggle /4488 fmedia/lhcb_description_official.
™G NA N NN NE N NN N N NN N N NN NN NN pdf (accessed 15 January 2018)

1.0,

Weight=0.5

f ---------------------------------------------------- ALY, The 2015 LHCb Kaggle ML Challenge
= ' - Event selection in search for t>pup
Q° """"""""""""""""""""""""""" IS - Classifier wins if it maximises a weighted ROC AUC

o
)

Y - Simplified for Kaggle — real analysis uses CLs

0772002222207

085 0.2 1.0
False positive rate (FPR)

Figure 3: Weights assigned to the different segments of the ROC curve for
the purpose of submission evaluation. The z axis is the False Positive Rate
(FPR), while the y axis is True Positive Rate (TPR).

 First time | saw an Area Under the Roc Curve (AUC)

« My reaction: what is this? is this relevant in HEP?
—try to understand why the AUC was introduced in other scientific domains
—review common knowledge for optimizing several types of HEP analyses

Questions for you — How extensively are AUC’s used in HEP, patrticularly in event selection?
Are there specific HEP problems where it can be shown that AUC’s are relevant?
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Spoiler! — What | will argue In this talk

» Different disciplines / problems — different challenges — different metrics
—Tools from other domains — assess their relevance before using them in HEP

» Most relevant metrics in HEP event selection: purity p and signal efficiency &,
—“Precision and Recall” — HEP closer to Information Retrieval than to Medicine

—“True Negatives”, ROCs and AUCs irrelevant in HEP event selection”
» AUCs — Higher not always better. Numerically, no relevant interpretation.

« HEP specificity: fits of differential distributions — binning / partitioning of data
—local efficiency and purity in each bin — more relevant than global averages of p,g,

— scoring classifiers — more useful for partitioning data than for imposing cuts
- optimize statistical errors on parameter estimates — metrics based on local p*eg;

« optimal partitioning: split into bins of uniform purity p; and sensitivity Si%

* ROCs are relevant in particle-ID — but this is largely beyond the scope of this talk
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Outline

Introduction to binary classifiers: the confusion matrix, ROCs, AUCs, PRCs

Binary classifier evaluation: domain-specific challenges and solutions
— Overview of Diagnostic Medicine and Information Retrieval
— A systematic analysis and summary of optimizations in HEP event selection

Statistical error optimization in HEP parameter estimation problems
— Information metrics and the effect of local efficiency and purity in binned fits
— Optimal binning and the relevance of local purity

Conclusions
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Binary classifiers: the “«confusion matrix”

« Data sample containing instances of two classes: Ntot = Stot + Btot
— HEP: signal Stot = Ssel + Srej
—HEP: background Btot = Bsel + Brej

 Discrete binary classifiers assign each instance to one of the two classes
— HEP: classified as signal and selected Nsel = Ssel + Bsel
— HEP: classified as background and rejected Nrej = Brej + Srej

true class: Positives + true class: Negatives -

(HEP: signal) (HEP: background)
. . .. T. Fawcett, Introduction to ROC analysis, Pattern
classified as: positives True Positives (TP) Recogaition Letters 27 (2006) 861 dot10.1016/
j.patrec. .10.01
(HEP: selected) (HEP: selected signal Ssel) -

classified as: negatives True Negatives (TN)
(HEP: rejected) (HEP: rejected bkg Bre))

| will not discuss multi-class classifiers (useful in HEP particle-ID)
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The confusion matrix about the confusion matrix...

Different domains — focus on different concepts — different terminologies

| will cover three domains:

TP TP | FP FP
(Ssel (Sse) | (Bsel

B - Medical Diagnostics (MED)

does Mr. A. have cancer?
FN TN
(Srej) (Brej)

- Information Retrieval (IR)
Google documents about “ROC”

TP

- HEP event selection (HEP)
TP TN lect Hi didat
TPR = PPV = TNR. = —1_-FPR select 199S event candidates
TP + FN TP + FP TN + FP
HEP: “efficiency” HEP: “purity” HEP: “background rejection”
Ssel Ssel 1 1 Bsel
€g — = — € = —
Stot r Ssel + Bsel ’ Btot
MED: prevalence
IR: “recall” IR: “precision” g
T, = tot
Stot + Brot
MED: “sensitivity”

MED: “specificity”
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Discrete vs. Scoring classifiers — ROC curves

Reject if D<Dy,, | Accept if D>Dy,, (€,=1-Dy,,) )
| T | 3
£ 105 .......... —— Signal (10k events) s —_
'2 10%Been T —— Background (100k events) ?0.8 AUC=0.900 —
O T e, e ] a
o L T Tl ; 'O
R e U £ 06/ ROC i
2 10 Seusensensy sgoedutonioononoatatansenstanutos sunet gt Sessnny o
% M e [ psang, e 3 g 0 4
g o e Lra e T o |
D 10° RRE 2 --- Btot = Stot
_1f ---- Background (10k events) - E & 0.2—— Btot = Stot * 10 n
10 o Background (1000k events) Dth To-3 Eoo e Btot = Stot * 100
- | | | | ] | | | |
10 0
0.0 0.2 0.4 r 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1
Discriminating variable D FPR (background efficiency)

Discrete classifiers — either select or reject — confusion matrix

« Scoring classifiers — assign score D to each event (e.g. BDT)
—ideally related to likelihood that event is signal or background (Neyman-Pearson)
— from scoring to discrete: choose a threshold — classify as signal if D>Dthr

ROC curves describe how FPR(g,) and TPR(g,) are related when varying Dthr
—used initially in radar signal detection and psychophysics (1940-50’3)

W. W. Peterson, T. G. Birdsall, W. C. Fox, The the-

ory of signal detectability, Transactions of the IRE Pro- J. A. Swets, Is There a Sensory Threshold?, Science 134
fessional Group on Information Theory 4 (1954) 171. (1961) 168. doi:10. 112‘3/ CCCCCCC 134 3473.168
doi:10.1109/TIT.1954.1057460 J ’\ Swets, V\ P. Tanner, T. G. Birdsall, Dec: 7O
W. P. Tanner, J. A. Swets, A decision-making theo ses in perception, Psychological Review 68 (1961) 301
of visual detection, Psxchologlcal Review 61 (1954), 401 dOl 10.1037 /1 0040 Iy

doi:10.1037 /h005 8700

A. Valassi — ROC curves and alternatives in HEP IML LHC — 26t January 2018 7/24




ROC and PRC (precision-recall) curves

- Different choice of ratios in the confusion matrix: g, £, (ROC) or p,e; (PRC)

« When Btot/Stot (“prevalence”) varies - PRC changes, ROC does not

Reject if D<Dy,, | Accept if D>Dy, (€,=1-Dy,,)
I

T
—— Signal (10k events)

[
ﬁ —— Background (100k events) E
o E
o
)
o
I s -
c o  Tt=-L_ T veta, . e
]
>
w E
_1F ---- Background (10k events)
10 ... Background (1000k events) D
-2 | I th ! .
10 00 0.2 0.4 r 0.6 08 1.0

Discriminating variable D

1 1m == 3
3 5 |
g 08 AUC=0.900 { 2 0.8 .
] 0
S o
£ o06f ROC - sos- PRC o
— o
© >
504} - 204 N
2 | ---. Btot = Stot a | --- Btot = Stot
& 0.2 —— Btot = Stot * 10 | = 02— Btot = Stot * 10
e R Btot = Stot * 100 T |- Btot = Stot * 100
| | | | | | | LT
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
FPR (background efficiency) TPR (efficiency or recall)
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Understanding domain-specific challenges

« Many domain-specific details — but also general cross-domain questions:

—1. Qualitative imbalance?
* Are the two classes equally relevant?
— 2. Quantitative imbalance?
* Is the prevalence of one class much higher?

— 3. Prevalence known? Time invariance?
* Is relative prevalence known in advance? Does it vary over time?

- 4. DI m en S i O n al ity? Scal e i nva” an Ce? M. Sokolova, G. Lapalme, A Systematic Analysis of

Performance Measures for Classification Tasks, Infor-
mation Processing and Management 45 (2009) 427.

* Are all 4 elements of the confusion matrix needed? & oo 500003002
* Is the problem invariant under changes of some of these elements?

—5. Ranking? Binning?
« Are all selected instances equally useful? Are they partitioned into subgroups?

 Point out properties of MED and IR, attempt a systematic analysis of HEP
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SE

: - : sy Tty i cor. it o, | - Medical Diagnostics (MED
Medical diagnostics (1) i |2 s o

X. H. Zhou, D. K. McClish, N. A. Obuchowski, Sta-

an d ML researc h tistical Methods in Diagnostic Medicine (Wiley, 2002).

doi:10.1002/9780470317082

 Binary classifier optimisation goal: maximise “diagnostic accuracy”
— patient / physician / society have different goals — many possible definitions

« Most popular metric: “accuracy”, or “probability of correct test result”:

TP (correctly

B = diagnosed as ill
TP TN L FP LFN ™ xTPR+(1—m5)x TNR

ACC =

TN (correctly
diagnosed as healthy)

— Symmetric — all patients important, both truly ill (TP) and truly healthy (TN)
—Also “by far the most commonly used metric” in ML research in the 1990s

L L];; L "} Sy i L{.‘[ 2151““ d) ’\llzf J. A. Swets, Measuring the acy o, afiug c system
| mnf 1ur 7.1217 Science 210 (1988) 1285. doi 10 1126/ 328 7615

e Since the 903 — shift from ACC to ROC In the MED and ML fields

F. J. Provost, T. Fawcett, R. Kohavi, The Case against

stimatios j r Comparin, g[ d ctio «Hg thms,

—TPR (sensitivity) and TNR (specificity) studied separately 9;%;3% N eyt “C“&/
» solves ACC limitations (imbalanced or unknown prevalence — rare dlseases, epidemics)
— Evaluation often AUC-based — two perceived advantages for MED and ML fields

» AUC interpretation: “probability that test result of randomly chosen sick subject
indicates greater suspicion than that of randomly chosen healthy subject”

* ROC comparison without prior D, choice (prevalence-dependent D, choice)

APBadl.Thu of the area d the ROC J. A. Hanley BJM\IlThmsang nd u fhea
n the evaluation of machine learn algorithms, under a recei. T operati ng cl characteristic (ROC) e, Ra-
Pa tt n Rec gnltl 3'3 (1997) 1145. doi 10 1016/’50031 diology 143 (1982) 29. doi:10. 1143/ adiology.143.1. rOBS 47

3203(96)001-12 2
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Medical diagnostics (2)

and ML research

« ROC and AUC metrics — currently widely used in the MED and ML fields
— Remember: moved because ROC better than ACC with imbalanced data sets

 Limitation: evidence that ROC not so good for highly imbalanced data sets
— may provide an overly optimistic view of performance

— PRC may provide a more informative assessment of performance in this case
* PRC-based reanalysis of some data sets in life sciences has been performed

» Very active area of research — other options proposed (CROC, cost models)
— Take-away message: ROC and AUC not always the appropriate solutions

S. I Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A

J. Davis, M. Goadrich, The relationship between Precision- CROC stronger than ROC: measuring, visualizing and

Recall and ROC curves, Proc. 23rd Int. Conf. on Ma-

chine Learning (ICML °06), Pittsburgh, USA (2006).

doi:10.1145/1143844.1143874
C. Drummond, R. C. Holte, Ezplicitly representing expected

cost: an alternative to ROC representation, Proc. 6th Int.

Conf. on Knowledge Discovery and Data Mining (KDD-00),
Boston, USA (2000). doi:10.1145/347090.347126

D. J. Hand, Measuring classifier performance: a coherent
alternative to the area under the ROC curve, Mach Learn

(2009) 77: 103. doi:10.1007/510994-009-5119-5
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optimizing early retrieval, Bioinformatics 26 (2010) 1348.
doi:10.1093 /bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in
clinical microarray research (and how to avoid them), Brief-
ings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008
H. He, E. A. Garcia, Learning from Imbalanced Data,
IEEE Trans. Knowl. Data Eng. 21 (2009) 1263.
doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, The Precision-Recall Plot Is More
Informative than the ROC Plot When FEvaluating Binary
Classifiers on Imbalanced Datasets, PLoS One 10 (2015)
e0118432. doi:10.1371/journal.pone.0118432
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- Information Retrieval (IR)

I N fo 'Mm at | on R et I | ev al Google documents about “ROC”

* Qualitative distinction between “relevant” and “non-relevant” documents
—also a very large guantitative imbalance

 Binary classifier optimisation goal: make users happy in web searches
— minimise # relevant documents not retrieved — maximise “recall” i.e. efficiency
— minimise # of irrelevant documents retrieved — maximise “precision” i.e. purity
—retrieve the more relevant documents first — ranking very important
—maximise speed of retrieval

* IR-specific metrics to evaluate classifiers based on the PRC (i.e. on g, p)

—unranked evaluation — e.g. F-measures F_= ole +(11 /0
+(1-

* a €[0,1] tradeoff between recall and precision — equal weight gives F1=

280

gHp

—ranked evaluation — precision at k documents, mean average precision (MAP), ...
* MAP approximated by the Area Under the PRC curve (AUCPR)

C. D. Manning, P. Raghavan, H. Schiitze, Introduction to
Information Retrieval (Cambridge University Press, 2008).
https:/ /nlp.stanford.edu/IR-book NB: Many different of meanings of “Information”
IR (web documents), HEP (Fisher), Information Theory (Shannon)...
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- HEP event selection (HEP)

Fl rSt (S| m p | est) H EP exam p I - select Higgs event candidates

« Measurement of a total cross-section o, in a counting experiment

* To minimize statistical errors: maximise £.,*p (well-known since decades)
—global efficiency .=S../S,,; and global purity p=S_. /(S +Bse) — 1 single bin”

(Aoy) o o 8 TV i Ewe —
5 5 8 Stot=0.50%(Stot+Btot)
—— ToyMod MAX=0.684
===+ SigDet MAX=0.500
08-.... BkgDet MAX=0.666 N

- RANDOM MAX=0.500

* To compare classifiers (red, green, blue, black):
—in each classifier — vary Dthr cut — vary €.and p
— find maximum of €,*p (choose “operating point”)
— chose classifier with maximum of € *p out of the four

o
o
I
|

-
. -
~a . a0
TmmE e .

TPR*PPV (efficiency*purity)
-
T
|

o
]
I

|

EffPur

o \ \ \ \
0 0.2 0.4 0.6 0.8 1

« £.*p: metric between 0 and 1 2 e
— qualitatively relevant: the higher, the better
—numerically: fraction of Fisher information (1/error?) available after selecting
— correct metric only for o, by counting! — table with more cases on a next slide

A. Valassi — ROC curves and alternatives in HEP IML LHC — 26t January 2018 13/24




Examples of issues with AUCs — crossing ROCs

» Choice of classifier easy if one ROC “dominates” another (higher TPR VFPR)
— PRC “dominates” too, then — and of course AUC is higher, too

* Choice is less obvious if ROCs cross!

« Example: cross-section by counting
— maximise product e,p — i.e. minimise the statistical error Ac?
—depending on S,,/B,;, a different classifier (green, red, blue) should be chosen
—in two out of three scenarios, the classifier with the highest AUC is not the best

« AUC is qualitatively irrelevant (higher is not always better)
» AUC is quantitatively irrelevant (0.75, 0.90, so what? — g.,p instead means 1/Ac?...)

1 T T
0.8 1 T T T 1 T T T 1 T T
£ Stot=0.95%(Stot+Btot) . Stot=0.50*(Stot+Btot) Stot=0.05%(Stot+Btot)
3 . —— ToyMod MAX=0.950 —— ToyMod MAX=0.684 —— ToyMod MAX=0.400
g et : _ --- SigDet MAX=0.950 — 0| ~7"" SiaDet MAX=0.500 _ ---- SigDet MAX=0.499
806 - RED: 5081 BkgDet MAX=0.974 < 308 BkgDet MAX=0.666 1 208 BkgDet MAX=0.095
5 . il ROC = RANDOM MAX=0.950 g RANDOM MAX=0.500 s RANDOM MAX=0.050
& : g 2 o B
5 04 + HIGHEST o6 -+ goer- RED: N gos BLUE: -
o N ’ g o 5
g ~AUC g y £ |LOWEST .. & |LOWEST . EfftPur
£ o2} —— ToyMod AUC=0.900 | £0.47 GREEN: 5:'0.47 ERROR e e | §0,47 ERROR .~ — .
-- SigDet AUC=0.750 z JIE 1
R RN BkgDet AUC=0.750 E LOWEST g - : % p H
L mwomalcsosoo | ERROR | Eoo Co E oo ]
0 0.2 0.4 0.6 0.8 1 T *
FPR (1 - background rejection or 1 - specificity) Eff*Pur o Eff*Pur | |
g . . . e A TrEmmmmes
05 02 0d 0% 08 % 0.2 04 0.6 08 O 0.2 0.4 06 8 }

TPR (efficiency) TPR (efficiency) TPR (efficiency)
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- HEP event selection (HEP)

Binary ClaSSIflerS in HEP select Higgs event candidates
Binary classifier optimisation goal: maximise physics reach at a given budget

Tracking and particle-ID (event reconstruction) — e.g. fake track rejection
— maximise identification of particles (all particles within each event are important)

Instances: tracks within one event, created by earlier reconstruction stage.

— P =real tracks, N = fake tracks (ghosts) — goal: keep real tracks, reject ghosts
— TN = fake tracks identified as such and rejected: TN are relevant (llUC...)
[Optimisation: should translate tracking metrics into measurement errors in physics analyses]

Trigger — maximise signal event throughput, within the computing budget — e.g. HLT

Instances: events, from the earlier trigger stage (e.g. LO hardware trigger)

— P = signal events, N = background events [per unit time: trigger rates]

— goal: maximise retained signal efficiency TP/(TP+FN) at a given trigger rate FP (as TP « FP)
— TN = background events identified as such and rejected: TN are irrelevant

- — constraint: max HLT rate (from HLT throughput), whatever the input LO rate is: TN are ill-defined

EVENT SELECTION = I WILL FOCUS ON THIS IN THIS TALK

Physics analyses — maximise the physics reach, given the available data sets

Instances: events, from pre-selected data sets

— P = signal events, N = background events

— goal: minimise measurement errors or maximise significance in searches
— TN = background events identified as such and rejected: TN are irrelevant
— physics results independent of pre-selection or MC cuts: TN are ill-defined
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Domain

Property

Qualitative class
imbalance

Quantitative class
Imbalance

Varying
or unknown
prevalence 1

Medical diagnostics

NO. Healthy and ill
people have “equal rights”.
TN are relevant.

Information retrieval

YES. “Non-relevant”
documents are a nuisance.
TN are irrelevant.

HEP event selection

YES. Background
events are a nuisance.
TN are irrelevant.

From small to extreme.
From common flu
to very rare disease.

Generally very high.
Only very few documents
In a repository are relevant.

Generally extreme.
Signal events are swamped
in background events.

Varying and unknown.
Epidemics may spread.

Varying and unknown
in general (e.g. WWW).

Constant in time
(Quantum cross-sections).
Unknown for searches.
Known for precision
measurements.

Dimensionality
and invariances

apalme, A Systematic Analysis of|
ification Tasks, Infor-

3 ratios €., €., I + scale.

New metrics under study
because ROC ignores T.
Costs scale with N,

2 ratios g, p + scale.
€, P enough in many cases.
Costs and speed scale with N,

TN are irrelevant.

Show only N docs in one page.

2ratios €., p + scale.

€, P enough in many cases.

Lumi is needed for: trigger,

syst. vs stat., searches.
TN are irrelevant.

Different use of
selected instances

Binning = NO.
Ranking — YES?
Treat with higher priority
patients who are

Binning — NO.
Ranking — YES.
Precision at k, R-precision, MAP
all involve global precision-recall

more likely to be ill?

(“top N documents retrieved)

Binning — YES.
Fits to distributions:
local €., p in each bin
rather than global €, p.
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Different HEP problems — Different metrics

Binary classifiers for HEP event selection (signal-background discrimination)

Cross-section (1-bin counting)

2 variables: global €, p (given S,)

Maximise S,.;*¢.*p (at any S,y)

Statistical Searches (1-bin counting )

error
minimization

Simple and CCGV - 2 variables:
global S, B, (or equivalently €, p)

. S, .
Maximise W (|.e. 1,Stot*£s*p)

Maximise Jz((sgel +Bsel) g 1+ 52 — Ssel)
B,

HiggsML — 2 variables: global Sy, By,

Maximise [2((s.,, + Bsel + K) log (1 + %) — ssel)

S
B_ +K

Punzi — 2 variables: global ¢, B,

.. €
s
Maximise Y

(or statistical

Cross-section (binned fits)
significance

maximization) Parameter estimation

(binned fits)

2 variables:
local €5; and p; in each bin
(given s,y ; in each bin)

Maximise ¥; s i€ *P;
Partition in bins of equal p,

imi 1 0Siut
MaximiSey; i *es +0; * (g——52k)>
tot,i

Partition in bins of equal p,« (2t
tot,i

Searches (binned fits)

3 variables: local s, S, S<e IN €aCh
bin (2 counts or ratios enough?)

Maximise a sum? *

Statistical + Systematic error
minimization

3 variables: g, p, lumi
(lumi: tradeoff stat. vs. syst.)

No universal recipe *
(may use local Sy, B, in side band bins)

Trigger optimization

Only 2 or 3 global/local variables — TN, AUC irrelevant

2 variables: global B, /time, global €

Maximise g at given trigger rate

Binary classifiers for HEP problems other than event selection

Tracking and Particle-ID optimizations

All 4 variables? * (NB: TN is relevant)

ROC relevant — is AUC relevant? *

Other? *

2 %

2 *
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Predict and optimize statistical errors in binned fits

Fit © from a binned multi-dimensional distribution
—expected counts y; = f(x;,0)dx = g*s,(0)+b, - depend on parameter 0 to fit

A A 1
Statistical error related to Fisher information [4?" =) = | (Cramer-Rao)

— binned fit - combine measurements in each bin, weighed by information

Easy to show (backup slides) that Fisher information in the fit is:
Fireal classifien) _ Zlﬁ ik L (%_LZ ) (ideal classifir) _ i 5% (%5'9@)2

—¢& and p; — local signal efficiency and purity in the it bin

Define a binary classifier metric as information fraction to ideal classifier:
—in [0,1] — 1 if keep all signal and reject all backgrounds
— higher is better - maximise IF 0 55)

: : : S
_ Interpretatlon: (AQ( cal classifier )) IF(AB( eal ¢ lasmﬁer))Q — l—( eal classifier) — (09

(d al classifier)
T as;
9 Z_}E(%)

NB: global e*p is the IF for measuring 6=o; in a 1-bin fit (counting experiment)!
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Numerical tests with a toy model

* | used a simple toy model to make some numerical tests
— Verify that my formulas are correct — and also illustrate them graphically
— Two-dimensional distribution (m,D) — signal Gaussian, background exponential

 TwWOo measurements:

—total cross-section measurement by counting and 1-D or 2-D fit
—mass measurement by 1-D or 2-D fits

 Detalls in the backup slides

100k signal and 1M background events
T L I

80 C il Mg
8'0 ' _0'4 . ,0'6 , , 1.0 Using scipy / matplotlib / numpy
Discriminating variable D and iminuit in Python from SWAN
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M by 1D fit to m — optimizing the classifier

» Choose operating point D, optimizing information fraction for 8=M in m-fit
— NB: different to operating point maximising €*p (IF for 8=0 in a 1-bin fit)

: 10s . :
« To compute IF as sum over bins — need average ;% In each bin

— proof-of-concept — integrate by toy MC with event-by-event weight derivatives
1 a|.7v[|2

*in a real MC, could save —
M2 90

for the matrix element squared |M|?

:.Jnits of :‘(m': evelnts per “‘Gev b'"l 1.2 Selection cut on D: accept D > 1—¢,
. I I I I
1000 -2 information fraction about M
[ 1.0 (fit for M from m distribution)
1 global efficiency_ * global purity 7
500 —1 E JE. (total cross section measurement) )
g s o3 £
- 0 7 s % —0 E '-6 0.6 Max=0.62 at ,=0.78 |
= = S Y Max=0.46 at &,=0.58 ...
-500|- ° < 5
H-13 2 0.4 —
— h(m) =
~1000| dh/dM (m) 0.2| .
—_— l/h(dh/dM) (m) —-2 :
800 850 900 950 1000 1050 1100 1150 1200 0_8 | | | |
m / GeV .0 0.2 0.4 0.6 0.8 1.0
signal efficiency &,
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M by 1D fit to m — visual interpretation

- 1 [9si\2
* Information after cuts: Zis— F

—fit = combine N different measurements in N bins — local g; p; relevant!

& . P; = show the 3 terms in each bin i

Prediction Fit results

o 900
%16 . .
[T 2.0 £ Signal efficiency=1.00 mmm Expected signal (N=10000.0)
. n . - ) 800 p 9
Ideal case - yellow histogram % R p— ;md—h{?(hé);ooeew 1h ff|  Efficiency~Purity = 1.00 ~ <0 purity=1.00 W Expected background (N=0.0)
(after cuts) coincides with and Q 1.2 eﬁ*pur*l,’ﬁ(dh;‘dM)? h . Information fraction = 1.00 1_5,; § w00 eff.pur=1.00 + I:.Ianc!om sample (N:Qéﬁ:')
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SUM=1/(0.200GeV)?

Red histogram:

[-+11

=
3
=
. . H § 2 eff*purt1/h(dh/dM)? 1'5‘? eff-pur=0.09 Fit (M 046 GeV)
4 3 it (M =1000.046+0.293 Ge
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= eff*pur*1/h(dh/dM)? - ‘: —— Fit (M=1000.215+0.277 GeV)
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1 /dsi 2 % 0.6 Signal efficiency é E
(== £ 04~ AVG=0.58 & [
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Optimal partitioning — information inflow

 Information about 0 in a binned fit > =iyi (C;fé)

1=1

« Do I gain anything by splitting bin y, into two separate bins? v: = w; + z;
—_ i.e_ iS the “information inﬂOW”* pOSitive? *A. van den Bos, Parameter Estimation for Scientists and

LEngineers (Wiley, 2007).

e Ao\ 2
w; \ 06 z; \ 06 w;+z; o0 wizi(urt——f—zi) -

. . . 1 OJw; 1 0z
—information increases (errors on parameters decrease) if -7 7 2 7

. . o . 10 10
— effect of the classifier — information increases if pws—% + pzs—%
w Z

* In summary: try to partition the data into bins of equal p, Sl%

— for cross-section measurements (and searches?): split into bins of equal p,
* “use the scoring classifier D to partition the data, not to reject events”
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Optimal partitioning — optimal variables

* The previous slide implies that q = p—— Is an optimal variable to fit for ©

— proof of concept — 1-D fit of q has the same precision on M as 2-D f|t of (m D)
—closely related to the “optimal observables” technique e e

:!)!)tll(ll \l

‘(
()p[ wal  obse

T T I 1 E I and
7000 m Expected signal (N=10000) g - Expected signal (N= 10000) . Phys. 3. C40 (2005) 407,
Frpected backsround (N=100000) 1.2 1%L BN Expected background (N=100000)
i< 6000 %+ Random sample (N=110208) 4 - 5% — Fit (M 999,854 +0.236 fb) e
> M d by 1D(m) fit to M 3 10F =
] - - Measured by m) fit to BN F .
Q 5000 (M=999.714 +0.293 fb) Y 'L Ideal case: + 0.200
2_4000 —— Measured by 2D(m,D) fit to M o E 1D flt(m), no CUt(D): + 0.292
(M=999.688 +0.233 fb) o 30 . .
L ’ & 10 1D fit(m), optimal cut(D): + 0.254
9] |8 F .
& 3000 £ 107k 2D fit(m,D), no cuts: +0.233
> = c
2000 | @ o'l 1D fit(9): + 0.236
1000 — 100; |
: ‘ ‘ T
0 900 1000 1100 1200 1300 1400 . . 0.0 0.1 0.2
Invariant mass m/GeV (Plvio. xso) () Cilw,) / GeV™!

10s
* In practice: train one ML variable to reproduce —ﬁ?

—not needed for cross-sections or searches (this is constant)
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Conclusion and outlook

Different disciplines / problems — different challenges — different metrics
—there is no universal magic solution — and the AUC definitely is not one
— | proposed a systematic analysis of many problems in HEP event selection only

True Negatives, ROCs & AUCs are irrelevant in HEP event selection
— PRC approach (like IR, unlike MED) more appropriate — purity p, efficiency €,

Binning in HEP analyses — global averages of p, €, irrelevant in that case
— FOM integrals that are relevant to HEP use local p, € in each bin
—AUC is an integral of global p, ¢, —» one more reason why it is irrelevant
— optimal partitioning exists to minimise statistical errors on fits

What am | proposing about ROCs and AUCs, essentially?
— stop using AUCs and ROCs in HEP event selection
* ROCs confusing — they make you think in terms of the wrong metrics

— identify the metrics most appropriate to your specific problem
| summarized many metrics that exist for some problems in event selection
» more research needed in other problems (e.g. pID, systematics in event selection...)

| am preparing a paper on this — thank you for your feedback in this meeting!
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Statistical error in binned fits

* Observed data: event counts n; in m bins of a (multi-D) distribution f(x)
—the expected counts y, = f(x;,8)dx depend on a parameter 6 that we want to fit
—[NB here f is a differential cross section, it is not normalized to 1 like a pdf]

« Fitting 0 is like combining the independent measurements in the m bins

—expected error on n; in bin x;is An; = \/y; =/f(xi,8) dx
—expected error on f(x;,0) in bin x; is Af = f * An/n, = Vf / dx

. ~ . . 1 af\? 1 szx/cﬂz of\? dz
—expected error on estimated 6; in bin x;Is 57:— = (%) N (—9) (Tf) = (@) =
2

(bin dx)

— expected error on estimated 8 by combining the m bins is (ﬁ) /% (ﬁ)Qdm

* A bit more formally, joint probability for observing the n;is P(:¢) = ][ —-
— Fisher information on 6 from the data available is then =

m

olog Pns0)]” & N~ L (am T l(af)
Ig_E[ % } l.e. I@—Eyé((?g) _ff o

— The minimum variance achievable (Cramer-Rao lower bound) is (a6 = var(d) >

6
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Effect of realistic classifiers on fits

- Previous slide: variance on estimated 8 is (49 = (6> — where 7 - Z;()

« With an ideal classifier, all signal events and only signal events are

selected, I.e.y; = S;, hence: jue ausier v L (asi)Q
0o

i=1 Si
« With a realistic classifier, only a fraction of all available signal events are
selected, as well as some background events: v.() = s +b,

— here ¢; is the local signal efficiency in bin x;
—note that yi:pis where the local signal purity is defined as » =,

. H H H real classifier - 1 881
—the available information is therefore reduced to ;" " = 3" c;pi g(%)

i=1

« In summary, with respect to an ideal classifier, a realistic classifier leads to a
higher error on the fitted parameter, (jee cusisey o L pgdeal ctasinen

IF
I(real classifier) Z ( )
0 i=1

55 ()
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Information fraction vs. AUC

- 1 (95:\*
I(real classifier) ; €ipi X gz (%)

* “IF” is a figure of merit between 0 and 1 (like the AUC...) 1P = 2 e = S 1)
— it depends on efficiency and purity (PRC rather than ROC) =R
» True Negatives are irrelevant...

— it depends on local efficiencies and purities
* but also applies to counting experiments (1 single “bin”) — see examples

— it depends on the choice of a point on the PRC/ROC (a threshold on D)
 but one can also use it in a fit to the full distribution of D — see examples

— it is qualitatively (higher is better) and quantitatively (A8 ~ 1/IF) relevant

A different figure of merit is needed for every different problem!
— | derived this for statistical errors in parameter fits (precision measurements)

— A similar f.0.m. can certainly be derived for optimizing searches
« “combining” the different bins of the distribution is done slightly differently...

— Systematic errors need to be handled differently...
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Systematic errors

. - 1 .
« Statistical errors « N systematics become more relevant as N grows

— Minimise statistical errors at low N — only depends on €, p

— Minimise stat+syst errors at high N — also depends on luminosity scale (S,,)
* i.e. need all three numbers TP, FP, FN — but TN remains irrelevant

« Simple example — measure o, by counting, 1% relative uncertainty in g,
— systematic error is lower than statistical error if (1 —,o) c 1
\/ﬁ o v €sStot ﬂbeJb
— optimizing total systematic + statistical error is a tradeoff involving €, p, S

« Complex problem, no universal recipe — interesting problem to work on!
—more in-depth discussion is beyond the scope of this talk
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Maximise & at 4 kHz

LHCb 2015 Trigger Diagram

n

Iy ROCS for events \ I r I g g e r 40 MHz bunch crossing rate EQ =

- v . r v r SE=

— mmadel ' ' 283

== rate: 4 kHz H H o g EE

ach| -- rabe: 2.5 kHz ] LO Hardware Trigger : 1 MHz £EES

o 4;4—',7 readout, high Er/Pr signatures Eg°

C [ 2w g

a ! 450 kHz 400 kHz 150 kHz 5 g=

E o 4 ' T. Likhomanenko et al., LHCh Top‘olog'im[ Trigger Reop- h* A w/pp A e/y . ;% g
al ' ' timization, Proc. CHEP 2015, J. Phys. Conf. Series 664 Sl
“ : ! (2015) 082025. doi:10.1088 /1742-6506,/664/8 /082025 e Y YN . ELEB=
E a : [ . Software High Level Trigger : --S g E g
E E E ngre 2_ T'l'igg(l]' events R{:}C' [ .Partial event recons_truction, s:-elect ] . : g L.Us E
- H H _ displaced tracks/vertices and dimuons 2L %=
E ! ! ciurve,  An output rate of 2.5 ) : . 3E8S
i ! ! kHz _‘mrros[mmiﬁ to an FPR of | |UC, 4kHz is " Butfer events to disk, perform online | gf é 5
E [].Eu'{t 4 ka‘ i .-l(_r'"u_. Thus 1\ £ (FP R) — 0 4% detector calibration and alignment E :j M_E
F o to find the signal efficlency for b . EE
- - Full offline-like event selection, mixture 2,22
a L5 kHz output rate, we take of 1 MHz LO hw rate of inclusive and exclusive triggers EESZ
. 0.25% background efficiency  and Efj % Z
N TR R T R L e L LT GECID GO0K oM find the ]_]Ui]lt on the ROOC curve 12.5 kHz (0.6 GB/s) to storage mEaT

FPR, background events efficiency that corresponds to this FPR.

 Different meaning of absolute numbers in the confusion matrix
—Trigger — events per unit time i.e. trigger rates
— (Physics analyses — total event sample sizes i.e. total integrated luminosities)

 Binary classifier optimisation goal: maximise €. for a given B, per unit time
—i.e. maximise TP/(TP+FN) for a given FP — TN irrelevant

* Relevant plot — g, vs. B, per unittime (i.e. TPR vs FP)
—ROC curve (TPRvs. FPR) confusing and irrelevant
—e.g. maximise g for 4 kHz trigger rate, whether LO rate is 1 MHz or 2MHz
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Event selection in HEP searches

« Statistical error in searches by counting experiment — “significance”
— several metrics — but optimization always involves €., p alone — TN irrelevant

C. Adam-Bourdarios et al., The Higgs Machine
Learning Challenge, Proc. NIPS 2014 Workshop

on High-Energy Physics and Machine Learning
g Ssel (Z0)? = Store Z, — Not recommended? (confuses search (HEPML2014), Montreal, Canada, PMLR 42 (2015)
0 m 0 = Otot€sp with measuring O-S once Signal established) 19. http://proceedings.mlr.press/v42/cowal4.html

Z, — Most appropriate? (also used
as “AMS2” in Higgs ML challenge)

1 1 2
(Z2)? = 2S01es (,0 10%(@) - 1) = Shot€sp (1 + 37 + @(Pz))

sel

S,
ZQ = -\/2 ((Ssel + Bsel) log(l + BSEI) - Ssel) —

B Z5 (FAMS3” in Higgs ML) — Most widely used, but strictly valid
Za = %]1 — (23)2 - Stotesl f ; = Stotesp (1 +p+ 0(p2)) only as an approximation of Z, as an expansion in Sy /Bgg < 1?

R. D. Cousins, J. T. Linnemann, J. Tucker, Evalua-

_ _ 2
B, -1 p(1+p+0(p%)

Expansionin p <« 1 ?—use
the expression for Z, if anything

G. Punzi, Sensitivity of searches for new signals and its
optimization, Proc. PhyStat2003, Stanford, USA (2003).
arXiv:physics/0308063v2 [physics.data-an]

G. Cowan, E. Gross, Discovery significance with statistical
uncertainty in the background estimate, ATLAS Statistics Fo-
rum (2008, unpublished). http://www.pp.rhul.ac.uk/~cowan/
stat /notes/SigCaleNote.pdf (accessed 15 January 2018)

tion of three methods for calculating statistical signifi-
cance when incorporating a systematic uncertainty into
a test of the background-only hypothesis for a Poisson
process, Nucl. Instr. Meth. Phys. Res. A 595 (2008) 480.
d0i:10.1016/j.nima.2008.07.086

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic
formulae for likelihood-based tests of new physics, Eur. Phys.
J.C 71 (2011) 15. doi:10.1140/epjc/s10052-011-1554-0

« Several other interesting open questions — beyond the scope of this talk
— optimization of systematics? — e.g. see AMS1 in Higgs ML challenge
— predict significance in a binned fit? — integral over Z2? (=sum of log likelihoods)?
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Tracking and particle-ID

ROCs irrelevant in event selection — but relevant in other HEP problems

Event reconstruction and particle identification
— Binary classifiers on a set of components of one event — not on a set of events

Example: fake track rejection in LHCDb

— data set within one event: “track” objects created by the tracking software
 True Positives: tracks that correspond to a charged particle trajectory in MC truth
» True Negatives: tracks with no MC truth counterpart — relevant and well defined

Binary classifier evaluation: €, and g, both relevant - ROC curve relevant
—is AUC relevant? maximise physics performance? what if ROC curves cross?
—these questions are beyond the scope of this talk

=}

10!

fake reject

0.7m

0.4F

0.6

05F

LHCb -

M. De Cian, S. Farry, P. Seyfert, S. Stahl, Fast neural-
net based fake track rejection in the LHCb reconstruc-
tion, LHCb Public Note LHCb-PUB-2017-011 (2017).
https://eds.cern.ch/record /2255039
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Using scipy / matplotlib / numpy
and iminuit in Python from SWAN

Simple toy model

« Two independent observables — f(m,D)=g(D)*h(m)
— discriminating variable D — scoring classifier
—invariant mass m — used to fit signal mass M

._.
o
Events per (0.01 x 4GeV) bin

04 06 08 1o 10
Discriminating variable D
100Kk si | t
1200 : signal events

Signal (xs=100 fb): Gaussian peak in m, flat in D
—mass M=1000 GeV, width W=20 GeV
—flatin D —» £,=1-D,,, if accept events with D>D,,

1150 |- -
1100| . . 1o
1050 s pEc e
1000
950 e A I A
900/ B R "
850 |- -

| | | | 0
8080 02 04 06 08 1o 10

Background (xs=1000 fb): exponential in both m and D
— cross-section 1000 fb — B, =100k

Invariant mass m/GeV

._.
o
Events per (0.01 x 4GeV) bin

rimiesting wariable D Two measurements (lumi=100 fo™ — S,=10k, B,=100K)
1200 g 2eckaround events —mass fit » estimate M (assuming XS, W)
TR — cross section fit — estimate XS (assuming M, W)
—counting, 1D and 2D fits, with/without cuts on D

Compare binary classifier to ideal case (no bkg):
e —ideal case —» AM = W/S ot = 0.200 GeV
*% Diseriminating variabls D —ideal case — AXS = XSH/S, , = 1.00 fb

Invariant mass m/GeV

Events per (0.01 x 4GeV) bin
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M by 1D fit to m — optimizing the classifier

o Goal: fit true mass M from invariant mass m distribution after a cut on D

—Vary £.=1-Dy, by varying cut D;,, —> compute information fraction on M for ¢, —

maximum of information fraction: IF=0.62 (AM=0. 254—3ﬂ) at €.=0.78

 Different measurements — different metrics — different optimizations
—maximum of information for fit to M — IF=0.62 (A1\7[:O.254—0 200) at €.=0.78

—maximum of information for XS by counting — £,*p=0.46 at £.= 0.58

: 1 0h . :
« To compute IF as sum over bins — need average Pyl each bin
— proof-of-concept — integrate by toy MC with event-by-event weight derivatives

Units of h(m): events per 4GeV bin 12 SFIECtion CUJ‘E on b: aCCTPt D>1-e
f ‘ f ‘ f 2 information fraction about M
o (fit for M from m distribution)
1000 1.0 global efficiency * global purity o
) (total cross section measurement)
500 1T e g 0.8 —
£ = £
€ 0 7 \ e %5 0.6 Max=0.62 at e,=0.78 .-~
= T = 0] Max=0.46 at e,=0.58 ..
s Z 5 0.4
-500 145 o2
=
A 0.2
~1000 dh/dM (m) -
S llh(dh/dM) (m) -2 ' :
0. | | | |
800 850 900 950 1000 1050 1100 1150 1200 8.0 0.2 0.4 0.6 0.8 1.0
m/ GeV signal efficiency e,
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M by 1D fit to m — cross-check

« Cross-check fit error returned by iminuit — repeat fit on 10k samples
— check this only at the point of max information — £.=0.78 and AM=0.254

%16 : ‘ : ( ‘ p ) : ‘

(] ' 2.0 si ciency— | -

1G] 2 . . £ 200 ignal efficiency=0.78 mmm Expected signal (N=7800.0) o
S 14 é{Jhlf/I{hﬁhglzﬂﬂG - Efficiency*Purity = 0.32 a purity=0.41 = Expected background (N=11076.2)
812 =0, € Information fraction = 0.62 |, . .E eff-pur=0.32 =+ Random sample (N=18965) 1
3 10| &Mpurt - - — Fit (=099 52070057 GeV) |

s : SUM=140.255GeV)? N

O 0.8 — N J1.03T N
- . c

= 0.6 Signal efficiency z N
£ 04|| 7 AvG-078 U 0.53}—:

= Signal purity )

B 02— avG=0.41 n
= Il n

— 0. 00 850 900 950 1000 1050 1150 12(900 1100 1150 1200

m / GeV Invariant mass m/GeV

OK! AM=0.254 consistently

Fit results (10k fits on 10k sa;rgles)

10k samples (100k signal apl 1M background events each) 10k samples (100K\signal and 1M background events each)
\

c \ \ — £ l T
= Mean = 1000002 +- 0.003 3 M -0.00002
'g 500 "* std o 20.002 | S 600 ¥ Std = 008 TT00.00001 —
(] 0]
O O 500} —
LN 400 - E Signal efficiency=0.78 | S Signal efficiency=0.78
N
S S 400 |
S 3001 2
= « 300 —
2 00| 8
0 « 200 |
-~ Q
g— 100 — g. 100 |
A ol | A 0 |

999 1000 1001 0.250 0.255 0.260
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i.e. the common

Cross-section by 1D fitto D practice of ‘BDT fits”

» Cross-section fits analogous to mass fits but simpler
— Differential cross-section proportional to total cross-section
1 0si 1

] 1 (0s, 2 —
_;£=—|sconstant—>2i;(£) * €L P = 2 Si.&. P

« special case : for a single bin (counting experiment) S, * €xp — maximise global exp

» For simplicity show only fit in D (could fit m, or m and D) and no cuts
— binning improves precision, also without cuts on D
— use the scoring classifier D to partition data, not to reject events — next slides

Prediction Fit results

0.018 1.8 10

0016 1/h{dh/dXS)? 16 Global signal efficiency=1.00 = EXPEE:E: ;igﬂka' (N=(110(?¢0060é)
O fficiency*Purity = 1. J Global signal purity=1.00 xpected background (N=0.
&8 01 SUM=1/(1.000fb)? Efficie c?r u \ty. 1.00 . - ‘g p : Y T oo somp (Vo390
=i eff*pur*1/h(dh/dXs)? Information fraction = 1.00 4 5 10 Slobal signel effpun=1.00 —— Measured by 1D fit to D (X5 =99.639:+0,998 fb) |
S 0.012 SUM=1/(1.000fb)? 128 e P o Measured by counting  (X5=99.640+0,998 fb)
) E S ]
Z 0010 102 g
= o £
. 0.008 Hose I
2 G &
S 0.006 Ho6g
< Signal efficiency o
T 0.004 —— AVG=1.00 0.4
- |l Signal purity

0.002 T AVG=1.00 0.2

...........................
U'Uog.ﬂ 0.2 0.4 0.6 0.8 1‘8'U
D [bin width: 0.01]
0.018 1.8 :
0.016 1/h(dh/dXS)? 16 5 Global signal efficiency=1.00 = Expec:eg ilgnkal (N=¢1101210°i?>)0000 5
. i *PUrity = . Global signal purity=0.09 xpected background (N=

.23 SUM=1/(1.000fb)? Efficiency*Purity = 0.09 - 10 ‘9 purity: =+ Random sample (N=110276)
‘S- 0.014 eff*purt1/h(dh/dXS) Information fraction = 0.53 14 o f ex%l;?__l[;gre\rl leasured by 1D fit to D (X5=100.8571.365 fb)
%" 0.012 SUM=1/(1.368fb)* 128 g
g 2 5
3 0.010 102 2
2 7 2
. 0.008 Ho.8c H
n u 3
3 0.006 06
= Signal efficiency v
Z 0.004 T AVG=1.00 0.4
=1 Signal purity

0.002 T AVG=0.09 02

...........................
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M by 2D fit — use classifier to partition, not to cut

« Showed a fit for M on m, after a cut on D — can also fit in 2-D with no cuts
—again, use the scoring classifier D to partition data, not to reject events

* Why is binning so important, especially using a discriminating variable?
—next slide...

Prediction Prediction i
12 T T T T T 1.2 T T T T T 2000 : Fit resultls : :
1D fit for M in m distribution 2D fit for M in m,D distribution — Eiﬁiiiié’ ;Iggfglr(oNungio(DN(fl)ooooo;
1.0 T L0 < 6000 4 Random sample (N=110208) |
Ne)
5 0.8 N _5 0.8l N E 5000 - = = Measured by 1D(m) fit to M B
4 . 4 . (M=999.714 +0.293 fb)
Q (@) <
Jud g - g 4000 — Measured by 2D(m,D) fit to M
E 0.6 N .E 0.6 1o (M=999.688 +0.233 fb)
B B % 3000 Ideal case: +0.200
> . L
g 0 4 B Tgnal events B g 0 4 B (&M for 10k signal events) B L 1D flt(m)’ no Cut(D): i 0.292
= S bine: o008 () = Sk 3oine: 006 (o.010) 2000 1D fit(m), optimal cut(D): = 0.254(|
5 bins: 0.019 (1.435) 5 x ins: ©.112 (©.598) )
13 bins: 6.3 (6:31) 3% 15 bins; 0837 (0,239 2D fit(m,D), no cuts: +0.233
0.2~ 1oL bine: o 407 (0299 - 0.2 oL x 101 bine: 0727 (0233 ] 1000 -
1001 bins: 0.469 (0.292) 1001 x 1001 bins: 0.729 (0.234)
0 0 | | ‘Target: 1.600| (0.200) | 0 0 | | | Target‘: 1.000 (O.Z(J‘Hﬁ 8 | | |
05 5040 0 80100 05 5040 0 80100 00 900 1000 1100 1200 1300 1400
#bins in m distribution #bins in m and D distributions Invariant mass m/GeV
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Optimal partitioning — optimal variables

* How to partition the data into bins of equal p, 51% ?

—as a proof of concept — also made a 1D fit for \ asgainst this one variable “q
—not surprisingly, the precision is the same as that of the 2D fit on m,D

\ \ 1 E \ \ \
Il Expected signal (N=10000) F Il Expected signal (N=10000)

106; Il Expected background (N=100000) E 106; Il Expected background (N=100000)—;
c 55 —— Fit (X5=98.921+1.099 fb) - 5§ —— Fit (M=999.854+0.236 fb) ]
o 0F g 10 Ideal case: + 0.200
o 1’ 8 10k 1D fit(m), no cut(D): +0.292
a . 1D fit(m), optimal cut(D): + 0.254
8 10 2 10 .
g 7 E 2D fit(m,D), no cuts: +0.233
e g 10 1D fit(optimal q): : + 0.236
10" <
107 =
0.8 . 10— ) 0.0 0.1 0.2
(phvi. xs.) (Pl xs0) (1) (Grlnao) / GEV™!
. i . 1 Jsi o
* In practice: train one ML variable to reproduce eyl
S.00
l S
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- HEP event selection (HEP)

HEP event selection properties [ selectHiggs event candidates

 Binary classifier optimisation goal: maximise physics reach at given budget
— Trigger and computing — maximise signal event throughput within constraints
— Physics analyses — maximise physics information from available data sets

M. Sokolova, G. Lapalme, A Systematic Analysis of
Performance Measures for Classification Tasks, Infor-
fon Processing and Management 45 (2009) 427.

« | will attempt a systematic analysis of properties: &ioamsino
— 1. Qualitative class imbalance — signal relevant, background irrelevant
* TN irrelevant and ill-defined (preselection, generator cuts) — only TP, FP, FN matter
— 2. Extreme guantitative class imbalance — signal events swamped in background
— 3. Prevalence largely constant in time — fixed by quantum physics cross section
* Prevalence: known in advance for precision measurements; unknown for searches.

—4. Scale invariance (with two exceptions) — optimization based on 2 ratios €, p
» Exception: trigger rate — constraint on throughput of FP(+TP) per unit time
» Exception: total error (statistical + systematic) minimization also depends on scale L

— 5. Fits to differential distributions — local €, p relevant (global €, p ~irrelevant)

* More details and examples in the following slides
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- Medical Diagnostics (MED)

Medical diagnostics (1) —accuracy | doesMrA have cancer?

 Binary classifier optimisation goal: maximise “diagnostic accuracy”

—not obvious: many different specific goals — many different possible definitions
* patient’s perspective — minimise diagnostic impact and impact of no/wrong treatment
* society’s perspective: ethical and economic — allocate healthcare with limited budget
» physician’s perspective — get knowledge of patient’s condition, manage patient

H. Sox, S. Stern, D. Owens, H. L. Abrams, Assessment of
Diagnostic Technology in Health Care: Rationale, Methods,
Problems, and Directions, The National Academies Press

(1989). doi:10.17226/1432

« Most popular metric: “accuracy”, or “probability of correct test result”:

TP + TN True Positives (TP)
ACC = = TMeX TPR—l—( 1 —‘?TS) X TNR (correctly diagnosed
TP + TN+ FP + FN as ill
X. H. Zhou, D. K. McClish, N. A. Obuchowski, St LG [Megeitives (1)
. . ou, . . icUlish, . . UChows. 15 a- :
tistical Methods in Diagnostic Medicine (Wiley, 2002). i Y Stot (correctly diagnosed
doi:10.1002/9780470317082 where prevalence IS |Tg = ——————— as health
Stot + Btot

« Symmetric — all patients important, both truly ill (TP) and truly healthy (TN)
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Medical diagnhostics (2) — from ACC to ROC

ACC metric — widely used in medical diagnostics in the 1980-'90s (still now?)
— Also “by far the most commonly used metric” in ML in the 1990s

Limitation: ACC depends on relative prevalence
— issue for imbalanced problems — diagnostic accuracy for rare diseases
— issue if prevalence unknown or variable over time — disease epidemics

F. J. Provost, T. Fawcett, R. Kohavi, The Case against
Accuracy Estimation for Comparing Induction Algorithms,
Proc. 15th Int. Conf. on Machine Learning (ICML

Since the ‘90s — shift from ACC to ROC in MED and ML fields it i

— TPR (sensitivity) and TNR (specificity) studied separately S“}ES’61?55;”&"55”’&Eﬁi%?ﬁé%/Z’liﬁfi;‘iﬁ?ﬁiyﬁ“”‘*
» reminder: all patients important, both truly ill (TP) and truly healthy (TN) s Do, S5 i) iz

Evaluation often based on the AUC — two advantages for medical diagnostics:

— AUC interpretation: “probability that test result of randomly chosen sick subject
indicates greater suspicion than that of randomly chosen healthy subject”

—ROC comparison without prior Dy, choice (prevalence-dependent Dy, choice)

A. P. Bradley, The use of the area under the ROC J. A. Hanley, B. J. McNeil, The meaning and u. fhe area
curve in the evaluation of machine learning algorithms, under a Tecgﬁ,ﬁr gpemtmg characteristic (ROC) e, Ra-
Pattern Recognition 30 (1997) 1145. doi:10.1016/S0031- diology 143 (1982) 29. doi:10. 1143/ adiology.143.1. ,053 47
3203(96)00142-2
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Medical diagnhostics (3) — from ROC to PRC?

ROC and AUC metrics — currently widely used in medical diagnostics and ML

Limitation: ROC-based evaluation guestionable for highly imbalanced data sets
— ROC may provide an overly optimistic view of performance with highly skewed data sets

PRC may provide a more informative assessment of performance in this case
— PRC-based reanalysis of some data sets in life sciences has been performed

Very active area of research — other options proposed (CROC, cost models...)
— Take-away message: ROC and AUC not always the appropriate solutions

S. J. Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A
CROC stronger than ROC: measuring, visualizing and

J. Davis, M. Goadrich, The relationship between Precision- optimizing ecarly retrieval, Bioinformatics 26 (2010) 1348.

Recall and ROC' curves, Proc. 23rd Int. Conf. on Ma-

chine Learning (ICML '06), Pittsburgh, USA (2006).

doi:10.1145/1143844.1143874
C. Drummond, R. C. Holte, Explicitly representing expected

cost: an alternative to ROC representation, Proc. 6th Int.
Conf. on Knowledge Discovery and Data Mining (KDD-00),

Boston, USA (2000). doi:10.1145/347090.347126
D. J. Hand, Measuring classifier performance: a coherent
alternative to the area under the ROC curve, Mach Learn

(2009) 77: 103. doi:10.1007/s10994-009-5119-5
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D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in
clinical microarray research (and how to avoid them), Brief-
ings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008
H. He, E. A. Garcia, Learning from Imbalanced Data,
IEEE Trans. Knowl. Data FEng. 21 (2009) 1263.
doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, The Precision-Recall Plot Is More
Informative than the ROC Plot When FEvaluating Binary
Classifiers on Imbalanced Datasets, PLoS One 10 (2015)
e0118432. doi:10.1371 /journal.pone.0118432
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Simplest HEP example — total cross-section

« Total cross-section measurement in a counting experiment

« To minimize statistical errors: maximise efficiency*purity £.*p
—well-known since decades
—global efficiency £.=S../S,,; and global purity p=S,/(Se+Bse) — “1 single bin”

Nmea.s - ﬁEbO_b 1 T T T
(Us)meas = Stot=0.50*(Stot+Btot)
EES —— ToyMod MAX=0.684
— gl Sigpet MAX=0.500 @
R I BkgDet MAX=0.666 m
ANmeaS 1 S f, 5 ~ RANDOM MAX=0.500
_ _ / sel Os€g 2
Ao = - NEXP Nexp = Ssel+ Bsel = — So6l |
Le, Leg 2 N o)
P P
o A2 @
§ &O %\® -~ o __.-"'- TTTT
f 04 &N \r§ """"" i
1 1 1 K
- —_ o
— EESP — Stot‘EsP & o2 (QO .
(Ac,)? o o2 &
° ° N " Eff*Pur
N —r 04 06 0.8 1

TPR (efficiency)

« £.*p: metric between 0 and 1
— qualitatively relevant (only for this specific use case!): the higher, the better
— numerically: fraction of Fisher information (1/error?) available after selecting

A. Valassi — ROC curves and alternatives in HEP IML LHC — 26t January 2018 44/24




Predict and optimize statistical errors in binned fits

* Observed data: event counts n, in m bins of a (multi-D) distribution f(x)
— expected counts y; = f(x;,0)dx — depend on a parameter 8 that we want to fit
—[NB here f is a differential cross section, it is not normalized to 1 like a pdf]

» Easy to show (backup slides) that minimum variance achievable is:

! ] _mlayiQ_/ng : : :
Af)? = var() > 7 (Cramer-Rao lower bound), where |z, = .Zlyi (89 =/ 75 dz | (Fisher information)

m

N 2
 With an ideal classifier (or no background) — y,=S; and [ “==<) = %~ si @89)
i=1 "

T

. . . - real classifier 1 681 ?
+ With a realistic classifier — [5.9) = e:5.(0) + b and |7 =3 ¢ (%)

i=1

—¢& and p; — local signal efficiency and purity in the it bin

108 .
) § e = (| 2EE
B I‘éreal classifier) — iPi S?; a0

 Binary classifier optimization — maximise jir
— higher is better

—_— interpretation: (Aé(real classiﬁer))Q > Ii(Aé(ideal classiﬁer))Z

(ideal classifier) — m N 2
Iel cal classiner Z i @
2 5;\ 00
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Optimal partitioning — information inflow

 Information about 0 in a binned fit > =iyi (ifé)

1=1

« Do I gain anything by splitting bin y, into two separate bins? v: = w; + z;
—_ i.e_ iS the “information inﬂOW” pOSitive? A. van den Bos, Parameter Estimation for Scientists and

_ y LEngineers (Wiley, 2007).
1 (0w \®, 1 (92 1 Owi+z)\? _ (wi%g —z%4)
— = +t— =5 = . = >0
w; \ 08 z; \ 06 w;+z; o0 w; zi (wi+2z;)

H f H . f 1 5wi ].azi
—information increases (errors on parameters decrease) if -7, 7, 5
 Both w, and z, can be written as s =es+6== Of _ 0s _y 107 _ 10s

p 26~ 00 foo = "so0

* In summary: try to partition the data into bins of equal p, SlaSi

L O-S
— for cross-section measurements (and searches?): split into bins of equal p,

— “use the scoring classifier D to partition the data, not to reject events”
 the BDT normally tries to represent a signal likelihood — i.e. ultimately the real p,
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