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Preface

When I was asked to write a concise presentation of hadronic jets, I first thought
about what my fresh view on the subject could be. In fact, my research activity
considers jets from a specific angle, that of precision calculations, and has the
ambition of understanding complicated observables involving jets my means of
analytic calculations. This requires a deep understanding of how jets are formed, and
what the theoretical and experimental issues behind them are. This is the knowledge
I have tried to share with the present book, which can be thought of as a gentle
introduction to jet physics. I also asked myself what kind of people might find such
reading useful. The book presents the main theoretical and experimental ideas that
had made it possible for jet physics to bloom, and to become one of the hot topics in
particle physics. It can be then useful to the first kind of readers I thought about, that
is physicists not directly involved in the field, in the hope that, seeing how relevant
problems in jet physics have been solved, they could find valuable inspiration for
their own research. Also, many times during my career I have met students, both
graduate and undergraduate, willing to start a project with me on jet physics, but
without the proper background in quantum field theory. Such students are not ready
to understand a topical review on the subject, or a book on collider physics. These
are the second kind of readers I had in mind. Therefore, I chose to present intuitive
physical explanations, so that a reader could quickly perceive the main ideas
involved. Furthermore, I have described how to perform calculations involving jet
observables using simple probabilistic arguments, which are a good starting point to
understand more sophisticated theoretical approaches. Last but not least, I thought
about the book as pleasant reading, where details could eventually be skipped, and
in which each chapter could be read independently from the others.

Let me now describe how the book is organised. The introduction aims to explain
what hadronic jets are, and why they are so important for our current understanding
of the physics of elementary particles. This also chapter contains an express
review of particle physics, so that the reader gets used to the language employed
in the rest of the book. This is followed by a chapter on jet algorithms, that describes
the procedures that are currently adopted to rigorously define jets. The first two
chapters can be understood by a reader with a solid background in fundamental
physics, with no detailed knowledge of particle physics required. Chapter 4 is
devoted to one of the hot topics in high-energy physics, the search for new particles
that decay into jets. This chapter could, in principle, be understood with the material
contained in chapter 2. However, the main ideas presented in chapter 4 can be better
appreciated by a reader familiar with quantum chromodynamics (QCD), the
quantum field theory that provides the theoretical foundations of jet physics.
Therefore, I have decided to devote chapter 3 to presenting QCD as the origin of
the main theoretical tools that are nowadays used to describe jets. Chapter 3 can be
thought of as a gigantic exercise, where every theoretical idea is presented through
an example, followed by a review of how the same idea is actually implemented in
current theoretical tools. It is my hope that the reader might understand the tasks

ix



that each tool actually performs, and to which physical situations it can be reliably
applied. Each chapter contains its own list of references, by no means complete.
These are the ones I would suggest an interested reader to go through, so as to have a
deeper understanding of the covered topics. Also, the book expresses a personal view
on the subject, so I felt free to select which results to present. In fact, in order to help
the book flow, I had to sacrifice an important topic like the production of jets with
wide angular gaps between them; and relevant concepts like soft-gluon interference,
renormalisation and parton density functions are only briefly mentioned.

Lastly, the book was completed just at the beginning of the high-energy runs of
the Large Hadron Collider at CERN This is the place where many of the methods
presented here will reveal their full potential. I very much look forward to seeing
these ideas put into practice, and hope that a ground-breaking discovery may come
out thanks to them.
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Chapter 1

Introduction

One of the most striking phenomena that can be observed in high-energy collisions
of elementary particles is the production of highly collimated bunches of particles
(see figure 1.1). These objects are known as hadronic jets. The word ‘hadronic’ refers
to the fact that jets are made up of hadrons, particles which can interact through the
strong force, the force that keeps atomic nuclei bound together. If we look inside
a jet we might find protons and neutrons, the constituents of nuclei, and other less
known hadrons such as pions, which are commonly observed as cosmic rays, as well
as kaons, rho mesons, etc. Looking at the list of hadrons in the ‘Review of particle
physics’ by the Particle Data Group [1], one finds around 160 pages devoted to
mesons, hadrons of integer spin (bosons), such as the pions, and another 50 pages
devoted to baryons, hadrons of half-integer spin (fermions), such as protons and
neutrons. Given this proliferation of particles, it seems almost a dream to be able to
understand anything about jets of hadrons, and even more inconceivable to write a
book about them. Surprisingly enough, the main features of hadronic jets, such as
their energies and angular distributions, have little to do with their constituent
hadrons, but rather with the constituents of the hadrons themselves. It is firmly
established that hadrons are not elementary particles, but are bound states of point-
like particles, the quarks. These are spin-1/2 particles interacting via the strong force,
which is mediated by spin-1 gauge bosons, the gluons. Quarks and gluons are
commonly referred to as ‘partons’, using the name that was given to quarks the first
time they were probed in inelastic electron–proton collisions at SLAC, in view of the
fact that they appeared as parts of the proton [2, 3]. In fact, in every such collision
the proton was breaking apart and the angular distribution of the scattered electrons
could only be explained by assuming that they hit point-like spin-1/2 particles,
carrying a fraction of the proton energy and charge. This behaviour was more
pronounced the higher the momentum transferred by the electron in the collision.
This means that the hit partons, when probed at high energy, were not tightly bound
inside the proton, otherwise the latter would have had recoiled against the electron
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as a whole. After some time, the partons were identified as quarks, elementary
particles whose existence had been hypothesised some years before by Gell-Mann to
explain the properties of hadrons [5].

The crucial breakthrough that gave theoretical soundness to the identification of
partons with quarks was the discovery that, in some quantum field theories, the
effective interaction strength between elementary particles decreases with increasing
energy of the particles involved [6, 7]. This property, known as ‘asymptotic
freedom’, was assumed to hold for the theory governing the interactions between
quarks. Within this framework it is possible to explain inelastic electron–proton
collisions. In fact, when the momentum transferred by the electron to the target is
small, the quarks interact very strongly and are confined within the proton, which
recoils against the electron as a whole. With higher momentum transfer, the quarks
inside the proton are probed at high energies and they essentially behave as free
particles. This picture was consistent with the behaviour of the electron–proton
inelastic collisions observed at SLAC.

More specifically, the theory underlying quark interactions is called quantum
chromodynamics (QCD), in that the quarks are supposed to carry a new type of
charge, called colour. They interact through the exchange of spin-1 particles, called
gluons. The latter obtain their name from the fact that they provide the ‘glue’ that
binds quarks together inside hadrons. QCD is quite similar to electromagnetism, with
gluons playing the role of photons. The main difference is that gluons carry colour
themselves and therefore can interact directly with other gluons1.

1 Photons can interact among themselves as well, but their interaction is always mediated by electrically
charged particles.

Figure 1.1. A spectacular event with many jets observed by the ATLAS detector at CERN. The picture is
taken from the ATLAS public event display repository [4]. ATLAS Experiment, Copyright 2014 CERN.
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QCD gives a natural explanation for the occurrence of hadronic jets. In fact, in a
high-energy collision, quarks and gluons are abruptly produced, and ripped apart.
Each parton (quark or gluon) radiates gluons, very much like an electron smashing on
a target radiates x-ray photons. This radiation is highly collimated in the directions of
the original quarks and gluons produced in the primary collision. Through radiation,
quarks and gluons degrade their energies and their interactions become stronger and
stronger, until they cluster together to form hadrons, which are the actual ‘final-state’
particles, i.e. the ones we observe in our detectors. The transformation of partons into
hadrons, commonly referred to as the ‘hadronisation’ process, does not significantly
alter the energy–momentum flow of the original quarks and gluons. Therefore, the
jettiness of high-energy hadronic events is to be attributed to the properties of gluon
radiation. Jets are thus the footprints of unobservable quarks and gluons in our
detectors. Most of their properties can be understood using the language of quarks
and gluons, without having to bother with the properties of final-state hadrons.

These speculations were actually confirmed by experiments involving electron–
positron collisions. First, events with two jets were observed by the SPEAR
collaboration at SLAC [8]. The angular distribution of the jets was compatible
with the production of a quark–antiquark pair fragmenting in two bunches of
collimated hadrons. The fact that the mechanism of jet formation was indeed due to
gluon radiation, as predicted by QCD, was firmly established with the discovery of
three-jet events at the Positron–Electron Tandem Ring Facility (PETRA; Positron–
Elektron Tandem Ring Anlage) collider at DESY [9–12]. These events were

Figure 1.2. A three-jet event as seen by the JADE detector at PETRA. Reproduced from [13] with kind
permission from Springer Science+Business Media.
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compatible with radiation of an energetic gluon off a quark–antiquark pair.
Subsequent studies of jet distributions in three-jet events were able to assess that
the gluon had spin-1, and measurements of angular correlations between jets in four-
jet events confirmed the existence of gluon self-interactions, as predicted by QCD
(see [13] for a historical overview of the discovery of the gluon and its properties).
Jets were also observed in hadronic collisions at the Intersecting Storage Rings (ISR)
[14] and at the Super Proton Synchrotron (SPS) at CERN [15, 16], thus completing
the picture. These and other results established, without any doubt, that QCD
provided the correct description of quark–gluon interactions at high energies and
that jets are the experimental signature that high-energy QCD is at work.

Jet physics is an incredibly rich subject. This book aims to provide a general overview
of this topic to scientists not directly involved in the field. It is not intended to be a review
of themost recent advances in jet physics, for which an experienced reader can find good
sources elsewhere [17], neither is it a QCD textbook, for which the reader is referred,
e.g., to [18, 19]. The general idea of this book is to present the basic experimental and
theoretical problems arising when dealing with jets and to describe the solutions
proposed in recent years. In this sense it might be very useful for students, both
experimentalists and theorists, who are just starting their PhD in high-energy physics.

The book is organised as follows. In chapter 2 we discuss jet algorithms, which
are the procedures that are used to rigorously define jets and to extract them from the
multitude of hadrons present in a typical final state at high-energy colliders. Chapter 3
will be devoted to QCD, the theory of strong interactions governing the dynamics of
quarks and gluons. In particular, we will describe the theoretical tools within QCD
that can be used to describe the properties of jets. Finally, in chapter 4 we will discuss
how, from a set of observed jets, it is possible to extract information on the elementary
event that has produced them. Such techniques are extremely important in the search
for new particles, especially when they are expected to decay into quarks and gluons,
giving rise to jets as final states. This is the starting point of a new subject, sometimes
referred to as ‘jetography’ [17], where jets are the basic ingredients used to describe
elementary final states, much as geographic maps are used to describe the Earth.

The reader who is familiar with elementary particle physics is ready to start with
chapter 2. In the following sections, basic facts on elementary particles and high-
energy colliders are presented. These can be considered as the minimal background
required for understanding the rest of the book.

1.1 The basics of elementary particle physics
The known elementary particles, and their interactions, are organised in the so-called
Standard Model of elementary particles, summarised in table 1.1.

It represents, in a sense, the actual table of elements. In the language of relativistic
quantum mechanics, each particle is associated with a corresponding field. In fact,
the energy of each free propagating field is not a continuous quantity, but is
quantised, i.e. made up of elementary excitations. These excitations carry both
energy and momentum and can be interpreted as particles.

The first building block of the StandardModel is matter particles, carrying spin-1/2.
These are further divided into three families of leptons and three families of quarks.
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Each family of leptons is organised into doublets. We have then the electron e with the
electron neutrino ν ,e the muon μ and the muon neutrino νμ, and the tau τ with the tau
neutrino ντ. All neutrinos are electrically neutral, whereas the electron, muon and tau
have charge−e, with e≃ 1.6 × 10−19 C the magnitude of the charge of the electron. Also
quark families are organised into doublets, the first containing the up (u) and down
(d) quarks, the second the charm (c) and strange (s) quarks, and the last the top (t) and
bottom (b) quarks. All quarks in the top row (up, charm and top) have electric charge

e2/3 , whereas the ones in the bottom row (down, strange and bottom) have charge
− e1/3 . The fundamental difference between leptons andquarks is that the former are not
subject to strong interactions. Each matter particle has a corresponding anti-particle,
having the same mass but opposite charges. For instance, the anti-particle of the
electron e− is the anti-electron or ‘positron’ e+. Similarly, the anti-particle of a
quark q is an anti-quark, denoted by q .

The second part of the table contains force mediators. These are spin-1 particles,
whose fields are responsible for the interactions among leptons and quarks. The
photon mediates electromagnetic interactions, the W and Z bosons mediate weak
interactions, and the gluon mediates strong interactions. All gauge bosons are
electrically neutral, except ±W , whose electric charge is ±e.

The last part of the Standard Model is the Higgs particle, whose field is
responsible for giving mass to all particles, the larger the interaction with the
Higgs field, the larger the mass of a particle. The Higgs boson is electrically neutral.

Throughout this book, we will use the system of natural units, in which the Planck
constant ℏ and the speed of light c are conventionally set to one. In this system of
units the only quantities with dimensions are length, which has the same dimensions
as time, and energy, whose dimensions are the inverse of a length. In natural units, all
masses have dimensions of energy and are usefully measured in electron-volts (eV).2

Aside from the u quark, the electron, the neutrinos, the gluon and the photon, all
particles in the Standard Model are unstable. The inverse of the decay time of a
particle in the particleʼs rest frame is called ‘width’ and is indicated by Γ. Of course,
the larger the width of a particle, the smaller its decay time. In natural units, the
width of a particle is measured in electron-volts.

2We recall that one electron-volt is the work done by the electric force to move an electron between two points
whose potential difference is one volt.

Table 1.1. The Standard Model of elementary particles.
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The elementary particles we observe in high-energy experiments have speeds that
are very close to the speed of light, so Lorentz transformations have to be applied to
relate quantities measured in one reference frame to another. To simplify equations
among the relevant physical quantities appearing in high-energy experiments, it is
useful to construct quantities that are invariant with respect to Lorentz trans-
formations. For instance, the energy E and the three-momentum (or impulse) of a
particle ⃗p in a given reference frame can be organised in a four-vector = ⃗p E p( , ),
with well-defined transformation properties from one frame to another. The quantity

= − ⃗ ⃗ = ⃗ · ⃗ = ⃗p E p p p p p, , (1.1)2 2 2 2 2

is invariant under Lorentz transformations. Its square root is equal by definition to
the mass of the particle. Similarly, if we consider two four-vectors = ⃗a a a( , )0 and

= ⃗b b b( , ),0 the ‘dot’ product

· ≡ ≡ − ⃗ · ⃗a b ab a b a b( ) (1.2)0 0

is also invariant under Lorentz transformations. In order to avoid the complications
of performing Lorentz transformations at every corner, it is customary to express all
relations between four-momenta (from here on simply ‘momenta’) in terms of
relativistically invariant ‘dot’ products. For instance, if pa and pb are the momenta
of the decay products of a particle, one measures the so-called ‘invariant mass’ of the
decay products, defined as the square root of the invariant

+ = + · +p p p p p p( ) ( ) ( ). (1.3)a b a b a b
2

It is possible to show using relativistic quantum mechanics that the distribution in
the invariant mass of the decay products of an unstable particle has a peak in
correspondence to the actual mass of the particle and the width of the peak, which
has in fact the dimensions of an energy, is proportional to the unstable particleʼs
width. Looking for peaks in invariant mass distributions is the standard procedure
to search for new particles. For instance, the recently discovered Higgs boson
appeared first as a peak in the invariant mass of two photons (figure 1.3, left-hand
panel), as well as in that of two Z bosons (figure 1.3, right-hand panel).

The properties of elementary particles are typically investigated through high-
energy collisions. Beam particles are stored and accelerated until they reach the
desired energy. They then collide at selected collision points where suitable detectors
have been placed. From the analysis of the signals in the detectors, experimentalists
are able to obtain information on the particles produced in each collision. The main
quantities of interest at colliders are cross sections, physical observables that are
related to the probabilities that events occur, and are independent of the details of
the experimental apparatus. More specifically, for a process →ab X, where a and b
are the colliding particles and X is a selected final state (for instance, a Higgs boson,
plus anything else), the number of observed events per unit time N td /dX is related to
the cross section σ →ab X via the relation:

σ= × →
N
t

d
d

. (1.4)X
ab X3

The quantity3 is called luminosity, and encodes the information on the intensity of the
beams, i.e. the rate of incoming particles per unit area. Cross sections have units of area
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and are usually measured in barn (b), with = −1 b 10 m .28 2 One considers also the
accumulated luminosity over a period of time, the so-called ‘integrated luminosity’,
which is usually measured in −b .1 Of course, the higher the integrated luminosity, the
better the chances will be of observing rare phenomena. This is illustrated in figure 1.4,

Figure 1.3. Distribution in the invariant mass of two photons (mγγ) measured by CMS [20] (left) and of two Z
bosons (m4l) measured by ATLAS [21] (right), in which a peak corresponding to the production of a particle
with a mass around 125 GeV can clearly be seen.

Figure 1.4. Cross sections for various processes involving vector bosons, as observed by the CMS detector
during the first run of the LHC.
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where one can see the cross sections for various processes involving vector bosons at
the Large Hadron Colider (LHC). Note that with increasing integrated luminosity
more processes become visible. In the following we will describe the different
experimental set-ups that can lead to measurements such as the one in figure 1.4. In
particular, the two kinds of machines we will consider in this book are electron–
positron and hadron–hadron (or simply ‘hadron’) colliders. Furthermore, we will
only deal with experimental set-ups that are relevant for jet physics. We will
deliberately ignore the extremely important low-energy machines used to observe
particular processes, such as rare hadron decays, or to measure selected physical
quantities, such as K0–K 0 mixing parameters, with very high precision.

In electron–positron (e+e−) colliders, electron and positron beams are accelerated
with various techniques and made to collide. Interesting events occur when an
electron and a positron from each beam annihilate, and the energy available in the
collision gives rise to new particles. The typical configuration of high-energy e+e−

colliders is that in which the two beams have the same energy Ebeam and opposite
velocities. In this way no energy is wasted in the motion of the centre-of-mass of
the system and a total energy E2 beam is available in the annihilation process. Given
the momentum of an electron k1 and that of a positron k2, one introduces the
relativistically invariant quantity

= +s k k( ) , (1.5)1 2
2

so that, in the case of two opposite beams with energy Ebeam each, =s E2 beam
represents the total centre-of-mass energy available for a collision. Examples of
high-energy electron–positron colliders are the PETRA accelerator at DESY, with
results analysed by the JADE [22], MARK-J, PLUTO, TASSO and CELLO [23]
experimental collaborations, and the Large Electron-Positron (LEP) collider at
CERN, with the four experiments ALEPH [24], DELPHI [25], L3 [26] and OPAL
[27]. One advantage of electron–positron colliders is that they typically produce a
limited number of particles in the final state, thus facilitating the interpretation of
experimental results. On the other hand, the total available energy is fixed at the
start of the experiment and it is generally difficult to increase, because this would
require improving the whole accelerator set-up. Furthermore, electrons and posi-
trons, when accelerated, tend to massively lose energy due to electromagnetic
radiation, so that it is very difficult to push electron–positron machines towards
high energies with current accelerator facilities. Therefore, e+e− collisions are not
ideal for discovering new particles whose masses are unknown, but are instead useful
for precisely measuring the properties of a recently discovered particle. This was the
case of the LEP machine in its first run (LEP1), operating at =s 91.2 GeV, the
mass of the Z boson, focused on the study of the properties of this particle.

Hadron–hadron collisions are mainly aimed at the discovery of new particles. In
fact, at high energies, hadrons break apart and their constituent quarks and gluons
undergo elementary highly energetic collisions, producing all sorts of particles. Each
parton involved in the collision carries an unknown fraction of the parent hadronʼs
energy, so that the total energy available in the collision is unknown. This property
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makes it possible to span a continuous range of energies up to the centre-of-mass
energy of the hadron–hadron collision without changing the experimental set-up as
in e+e− machines. Furthermore, hadrons such as protons or antiprotons lose less
energy than electrons and positrons through electromagnetic radiation and hence
can be more effectively accelerated to higher energies. Examples of high-energy
hadron colliders are the SPS [28], the Tevatron [29] and the LHC [30]. The SPS,
located at CERN, at its time of operation was a proton–antiproton collider and is
most famous for the discovery of the W [31, 32] and Z [33, 34] bosons by the two
experiments UA1 [35] and UA2 [36]. The Tevatron, at Fermilab, has recently
terminated its operations as a high-energy collider. It used proton and antiproton
beams, with a centre-of-mass energy of =s 1.8 TeV in its first run and

=s 1.96 TeV after an upgrade. Among its most important results is the discovery
of the top quark [37, 38]. The LHC is a proton–proton collider located at CERN.
It first ran at =s 7 TeV and =s 8 TeV, and has recently been upgraded to reach
the centre-of-mass energy of 13 TeV. In its first run, the LHC discovered a spin-0
particle whose properties are compatible with the Higgs boson of the Standard
Model [39, 40]. The LHC is the machine which, at the moment, is expected to
discover new physics beyond the Standard Model.

The different characteristics of electron–positron and hadron collisions have
consequences on the kinematic variables that are typically used in physics analyses.
Before discussing these differences, it is useful to quickly review the different parts
of a high-energy physics detector. Close to the collision point there is a tracker,
which is able to precisely determine the direction of charged particles. This makes it
possible to measure charged particle three-momenta by bending their trajectories
with a magnetic field. After the tracker there are two detectors called calorimeters
devoted to the measurement of particle energies. The first is the so-called ‘electro-
magnetic’ calorimeter, where photons and electrons lose all their energy. Hadrons,
however, lose only part of their energy inside the electromagnetic calorimeter, so
their energy determination requires an additional detector, called the ‘hadronic’
calorimeter, where all hadrons are supposed to stop. Muons are the only charged
particles that escape the hadronic calorimeter. Their three-momenta are measured
through muon detectors, which represent the outermost part of a high-energy
detector. Neutrinos are not detected at all and contribute to the so-called missing
energy.

Typically, in high-energy electron–positron colliders, the reference frame of the
laboratory coincides with the centre-of-mass frame of the collision. Therefore, one
naturally stores the energy and the three-momentum of each particle in that
reference frame. In hadron collisions, beam particles break apart and the energy
of each elementary collision is not known. It is therefore very important to use
kinematic variables that transform as simply as possible under Lorentz boosts in the
beam direction (which sets for us the z-direction). One of these quantities is the
transverse momentum of each particle with respect to the beam, which is invariant
with respect to such boosts. For a particle of momentum =p E p p p( , , , ),x y z

its transverse momentum is identified by its magnitude = +p p px yt
2 2 and its
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azimuthal angle ϕ = p parctan( / ).y x Another useful variable is the rapidity y, defined,
given a momentum p, as

= +
−y

E p
E p

1
2

ln . (1.6)z

z

If a particle is massless, its rapidity is related to the angle θ that the particle three-
momentum forms with the beam axis, as follows

θ
θ

θ= +
− = −y

1
2

ln
1 cos
1 cos

ln tan
2

. (1.7)

The angular variable θ−ln tan( /2) is called pseudorapidity and is denoted by η. For
massless particles, rapidity and pseudorapidity coincide. Therefore, a particle close
to the beam setting the positive (negative) z-direction has a large positive (negative)
rapidity. Zero rapidity corresponds to a particle whose three-momentum is only
transverse to the beam. Under a boost along the beam direction, the rapidity of each
particle shifts by a constant quantity, so differences in rapidities are boost-invariant
observables. Therefore, in hadron collisions, it is natural to use transverse momen-
tum and rapidity as kinematic variables for each particle. However, since detectors
are typically sensitive to particle directions and energy deposits, it is also customary
to give information about each particleʼs pseudorapidity η and transverse energy

θ=E E sin ,t with E the particleʼs energy. Obviously, the transverse energy of a
massless particle is the magnitude of its transverse momentum. An example of
how to describe an event in terms of the aforementioned kinematical variables can
be seen in the bottom right-hand corner of figure 1.1. There, the horizontal plane
corresponds to the pseudorapidity–azimuth plane (η–ϕ). Each point in the
plane corresponds to a hadronic calorimeter cell (one of the segments into which
the hadronic calorimeter is divided). The vertical axis instead represents the
transverse-energy deposit in each cell. All the energy deposits within each of the
coloured circles in the η–ϕ plane are considered to build up a jet.

Another difference between e+e− and hadron collisions, which is particularly
relevant for jet physics, is which hadrons can actually be observed. In e+e− colliders,
only a negligible fraction of hadrons can fall in the tiny angular region around the
beam pipe which is not covered by detectors. Therefore, we can reasonably assume
that all hadrons are observed in electron–positron colliders. This is in contrast to
high-energy hadronic collisions, where the colliding particles are coloured quarks
and gluons. QCD radiation from incoming partons is very collimated around the
beam direction, which will contain many interesting hadrons. In hadron collisions, it
is therefore important to consider the actual rapidity range spanned by the various
parts of a detector. In fact, the tracker is usually placed in a central (pseudo) rapidity
region, for instance η∣ ∣ ≲ 1.5 at the Tevatron and η∣ ∣ ≲ 2.5 at the LHC. The hadronic
calorimeter extends further, for instance up to η∣ ∣ ≃ 3 at the Tevatron and η∣ ∣ ≃ 5 at
the LHC. The cells of the hadronic calorimeter do not possess the same resolution as
the central tracker, especially in the most forward and backward regions, where
hadrons from beam fragmentation are most likely to fall. This means that in hadron
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collisions, the basic objects that will be measured are not individual particles, but
rather pseudo-particles, reconstructed out of the energy deposited in the cells of
electromagnetic and hadronic calorimeters. It is then natural to try to construct
objects that are independent of the fine details of the detectors. Hadronic jets offer a
viable solution to this problem, which is yet another reason why they currently play
such an important role in high-energy physics.
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Hadronic Jets
An introduction
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Chapter 2

Jet algorithms

Let us consider an event such as the one displayed in the left-hand panel of figure 2.1,
in which we recognise the presence of hadronic jets, and ask ourselves how many
jets we observe. One might say it is clearly two, but for instance the (pale blue)
tracks on the left-hand side of the image can be considered to be a jet by themselves.
In fact, this event is classified by ALEPH as a four-jet event, but on what basis? If
we nevertheless consider the event as containing two jets, which hadrons have to be
included in each jet? If this may be an easy task for the event in the left-hand panel
of figure 2.1, what about the event in the right-hand panel, which contains hadrons
spread all over the detectors? Suppose we have assigned each hadron to a jet, we
have to repeat the same procedure for every event. We definitely need a set of rules
to establish how many jets each event has and which hadrons have to be assigned to

Figure 2.1. Two four-jet events from the event display of the ALEPH collaboration at LEP [1].
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each jet. Such a set of rules is called a ‘jet algorithm’. There exist many jet
algorithms and choosing one or the other depends crucially on the kind of
information that we wish to extract from a set of events. Before going into the
details of the various jet algorithms, let us focus on what a jet algorithm should
intuitively do. Jet events are originated by the production of highly energetic (hard)
quarks and gluons, which later on transform into collimated bunches of hadrons
through a mechanism that will be explained in the following chapter. It is natural to
require that the number of jets we observe, as well as their energy–momentum flow,
reflect the properties of the hard quarks and gluons that were initially produced in
the elementary collision. For instance, if an event is generated by the production of a
hard quark–antiquark pair in electron–positron annihilation, a good jet algorithm
should produce as outputs two jets, with momenta very close to those of the parent
quark and antiquark.

Sterman–Weinberg jets. The very first jet algorithm, developed by Sterman and
Weinberg [2], is a good example of how to map final-state hadrons into jets. Let us
consider for simplicity e+e− annihilation. The algorithm works as follows: an event is
classified as having two jets if all but at most a fraction ϵ of the total energy of produced
hadrons is contained inside two cones of opening angle δ. If ϵ is sufficiently small, the
two cones will contain the quark and antiquark produced in the hard collision. This
simple example already highlights an important aspect of jet algorithms: they depend
on parameters by varying which one changes the fraction of hadrons that are included
in each jet. Another important feature of Sterman–Weinberg jets is that, given ϵ and δ,
the fraction of events with two jets, the so-called two-jet rate, is a well-defined
observable and can be computed using relativistic quantum mechanics within the
framework of QCD, the theory of quarks and gluons. What is the property of the jet
definition that makes this possible? To answer this question we need to consider jets
immediately before the quarks and gluons transform into hadrons. In QCD, the
probability of emitting a gluon that has exactly zero energy is infinite. This pathological
behaviour is referred to as soft divergence. In fact, the term soft refers to a particle
whose energy is much smaller than the typical energy of the other particles. Similarly,
one obtains an infinite result if one parton (quark or gluon) splits into a pair of parallel
(collinear) partons, giving rise to a collinear divergence. Fortunately, quantum
fluctuations (virtual corrections), for instance the fact that a gluon is emitted and is
reabsorbed before it is observed, lead to the same kind of divergences, but with opposite
sign. Then, if a physical observable is affected in the samewayby an infinitely soft gluon
and the corresponding quantum fluctuation, the infinities will cancel and a QCD
calculation in terms of quarks and gluons will give a finite result. If an observable is to
be calculable in QCD, a similar cancellation should occur for collinear divergences as
well. For instance, in the case of Sterman–Weinberg jets, for a given value of ϵ and δ,
after the addition of a zero-energy gluon the event will still be considered a two-jet event
and a quantum fluctuation will also not change the number of jets. Infinities will then
cancel between real (gluon emission) and virtual (quantum) corrections. This is
illustrated in figure 2.2.
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Infrared and collinear safety. As a practical rule, to ensure cancellation of soft and
collinear infinities, the number of jets and their momenta should stay the same

1. after the addition of an arbitrary number of infinitely soft partons (infrared
safety) and

2. after an arbitrary number of collinear splittings (collinear safety).

Jet algorithms that satisfy both requirements are called infrared and collinear
(IRC) safe algorithms. Sterman–Weinberg jets are IRC safe.

IRC safety is the property that ensures that jets defined at the detector level (for
instance using calorimetric cells as inputs), at the hadron level (using hadrons with a
lifetime up to an agreed value) and at the parton level (obtained fromquarks and gluons)
are essentially the same. In fact, it is possible to show that, for IRC safe observables, the
reshuffling of momenta due to hadronisation leads to effects that are suppressed by
inverse powers of the typical momentum scale of the process under consideration, for
instance the transverse momentum of a given jet. The higher this scale, the closer
hadronic observables will be to the corresponding partonic ones. On the experimental
side, a huge issue is the fact that calorimetric cells, especially in hadron colliders and in
the forward and backward regions, cannot resolve the energy deposit of single particles.
Therefore, jets can only be defined using the transverse energy, the pseudorapidity and
the azimuth of individual calorimetric cells as inputs, rather than the momenta of
individual hadrons. However, for IRC safe jet algorithms, a soft gluon will give an
energy deposit which will not alter the number of jets or their momenta. Similarly
collinear splittings, giving energy deposits in the same calorimetric cell, will be clustered
inside the same jet. In practice this implies that the IRC safe jet definitions will be
independent of the details of the detector, up to corrections that vanish as a power of the
detector resolution. The granularity of calorimeters represents such an issue that, in
hadron collisions, jets are the main objects that enter physics analyses. To be as
insensitive as possible to detector effects, jet algorithms must be IRC safe.

Good jet algorithms. In the early 1990s, a document known as the ‘Snowmass
Accord’ [3] summarised the desired features of jet algorithms. Specifically, a good jet
algorithm should:

1. be simple to implement in an experimental analysis;
2. be simple to implement in theoretical calculations;
3. be defined at any order of perturbation theory;

Figure 2.2. The cancellation of soft singularities at work in Sterman–Weinberg jets. The emission of an
infinitely soft gluon (left) does not change the amount of energy outside the two cones around the primary
quark–antiquark pair. The same happens in the case of a quantum fluctuation (right).
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4. yield finite cross sections at any order of perturbation theory;
5. yield a cross section that is relatively insensitive to hadronisation.

IRC safety automatically ensures that the last three conditions are satisfied.
Concerning point 2 above, due to the fact that most QCD calculations are

performed numerically via Monte Carlo procedures that simulate collider events, a
jet clustering algorithm can be arbitrarily complicated. However, in order to have an
understanding of the properties of the algorithm, it might be useful if jet observables
(e.g. jet rates) could be to some extent computed analytically. This is why procedures
understandable to humans are preferred compared to other procedures.

Point 1 deserves special attention. As for point 2, there is no conceptual problem
in letting an algorithm crunch a set of particle momenta. However, in environments
with lots of particles, such as high-luminosity hadronic colliders, or even heavy-ion
colliders, the speed of an algorithm can become an issue. This is why a lot of effort has
been put toward designing algorithms that are not only IRC safe, but also scale nicely
with the number of input particles. Another typical experimental issue is the
elimination of background. This can arise due to particles that have nothing to do
with the event under consideration, for instance coming from secondary collisions
occurring close in time to a primary collision of interest (the so-called ‘pile-up’ (PU)), or
simply fromdetector noise. Such backgrounds are easier to eliminate if jets have a fixed
shape, for instance if each jet is enclosed in a circle in the η–ϕ plane. Achieving this last
property is a highly non-trivial task, as will become clear at the end of section 2.1.1.

Given this general overview, we will now discuss different jet algorithms. In
section 2.1, we will present the two main families of algorithms currently in use,
namely cone and sequential algorithms. Rather than giving a historical overview, we
will concentrate on the distinctive features of both families. In section 2.2, we will
present some of the most recent ideas on jet algorithms, which have not been
exploited in experimental analyses, but that nevertheless have intriguing properties
that might be useful to investigate in the future.

2.1 Cone or sequential algorithms?
2.1.1 Cone algorithms

When looking at events containing jets, it is natural to draw cones around the most
energetic deposits in detectors and identify a jet as the set of particles within one of
those cones. In hadron colliders, one looks at events in the two-dimensional space
defined by pseudorapidity and azimuth (the η–ϕ plane), where particles appear as
spots, having activated a number of calorimetric cells. Figure 2.3 includes, in the
bottom right-hand corner, a so-called ‘lego’ plot, in which not only is it possible to
see the active calorimetric cells in the η–ϕ plane, but also the corresponding
transverse energy deposit, represented by the height of the tower above each cell.

Fixed cones. A natural way of finding jets is to start by drawing a circle around the
most energetic spot in an event and consider all the particles inside each circle to
build up a jet. More rigorously, one considers a list of pseudo-particles, which can be
individual particles, calorimetric cells, or even jets resulting from some earlier
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clustering procedure. One then takes the pseudo-particle with the largest transverse
momentum (or transverse energy) and draws around it a circle of radius R, the jet
radius, in the η–ϕ plane. All pseudo-particles within that circle are considered to build
up a jet. These pseudo-particles are then removed from the original list and the
procedure is repeated until all pseudo-particles have been assigned to a jet. This is the
first example of a cone algorithm, which is commonly referred to as a ‘fixed-cone’ jet
algorithm. This simple example already highlights one of the main problems of cone
algorithms, which is how to draw cones so as to obtain an IRC safe procedure. The
cone algorithm we have just described, similar to the ones used by the UA1 and UA2
experiments at the SPS [5], is unfortunately collinear unsafe. In fact, the highest
transverse momentum particle can change after collinear splittings, whereas nothing
happens in the presence of quantum fluctuations1. Hence real and virtual corrections
can give rise to different jets and infinities will not cancel. This non-cancellation is
illustrated pictorially in figure 2.4. Note that the quantity that should not change in an
IRC safe cone algorithm in hadron collisions is not the number of jets, but rather the
momenta of jets that have a transverse momentum above a given threshold, which we
call the ‘hard’ jets. In fact, nothing can prevent an infinitely soft gluon sufficiently far
away from all the other jets giving rise to an infinitely soft jet. This, however, does not
change the momenta of the hard jets.

Stable cones. A more refined procedure aiming at having an IRC safe cone
algorithm involves the concept of a stable cone of radius R, which is the set of all

Figure 2.3. The display of an event recorded by the ATLAS detector at CERN. The bottom right-hand corner
shows the lego plot of the event [4]. ATLAS Experiment, Copyright 2014 CERN.

1This is strictly true only if the inputs of the algorithm are individual particles, or calorimetric cells, but not if
they are jets defined with some IRC safe procedure.

Hadronic Jets

2-5



pseudo-particles pi which are within a distance R in the rapidity–azimuth (y–ϕ)
plane from a jet axis pJ (with rapidity yJ and azimuth ϕJ)

2:

ϕ ϕ− + − <( ) ( )y y R , (2.1)i iJ
2

J
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with the jet axis constructed out of the momenta of the particles inside the stable cone.
Its direction can be, for instance, that of the vector sum of the momenta of the selected
pseudo-particles. Other popular definitions involve the weighted combinations
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2 and all sums extend to all pseudo-particles inside the region

identified by (2.1). In practice, a stable cone is a circle in the y–ϕ plane with its centre
coinciding with the jet axis.

Neither a collinear splitting nor a soft emission can change the position or
momentum of a hard stable cone. Therefore, if we identify each stable cone with a
jet, the momentum of the jets with transverse momentum above a given threshold is
an IRC safe quantity. A way to look for all stable cones is to consider all possible
circles of radius R that one can draw and for each one check if the position of the
corresponding jet axis in the (y–ϕ) plane coincides with the centre of the circle: thenwe
have found a stable cone. In practice this is not feasible, so that more efficient
procedures have to be devised. One possibility might be to use the momenta of all
pseudo-particles as trial directions for the jet axis. Such trial directions are known as
seeds [6]. One starts with any pseudo-particle and constructs the jet axis out of the

Figure 2.4. A collinear unsafe jet algorithm. Each line represents a parton and the height of each line is
proportional to the parton transverse energy. The horizontal axis can be thought of as the pseudorapidity axis
at a fixed azimuth, or vice versa. With a virtual correction, the parton on the right is the most energetic, so that
a jet is formed by this parton and the central one. If a collinear splitting occurs, the parton on the left becomes
the most energetic and will then form a jet with the central parton. Adapted from [31].

2 In the rest of this chapter we will use transverse momenta and rapidity to describe particles in hadron
collisions, since these quantities have simple transformation rules under Lorentz boosts. All the quantities that
we will introduce can be redefined in terms of transverse energy and pseudorapidity, without changing any of
the conclusions we will draw.
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momenta of all pseudo-particles within a distance R from it in the y–ϕ plane. The
resulting axis is a new trial direction, and the procedure is repeated until the pseudo-
particle content of the set does not change any more. Then we have found a stable
cone and another pseudo-particle is used as a seed, until all trial directions have
been used. Such algorithms are commonly referred to as ‘iterative-cone’ finders.
Unfortunately, the procedure we have just described is not able to find all hard stable
cones, because it will definitely miss those centred at the midpoint of two pseudo-
particles with similar transverse momentum. This cone will be found only after the
emission of a soft particle between the two energetic ones. The algorithm is thus
infrared unsafe, because the quantum corrections cancelling the infinity coming from
soft gluon emission cannot be used as seeds to find the new hard stable cone [7] (see
figure 2.5)3. An attempt to fix this problem could be to add more seeds, for instance
also considering the midpoint between any pair of pseudo-particles as an additional
trial direction [8]. Unfortunately, as explained for instance in [9], even for this choice
of seeds it is always possible to find configurations in which the addition of an
infinitely soft gluon leads to finding a newhard stable cone.At themoment there exists
no IRC safe seeded cone algorithm, although a no-go theorem stating that it is
impossible to have an IRC cone algorithm with a finite number of trial directions for
stable cones has never been openly formulated.

The problem of finding all stable cones has been solved in a general way using
seedless algorithms. From an experimental point of view, one can draw circles
centred in each cell of the hadronic calorimeter and check whether each corresponds
to a stable cone [8]. This is the closest equivalent to a seedless algorithm that draws all
possible circles, but is quite expensive from a computational point of view, because it
requires N n( )cells6 steps, where Ncells is the number of calorimetric cells and n the
typical number of particles within a cone. If one has information of the momenta of
all pseudo-particles, one can consider all possible subsets of pseudo-particles and
check whether each subset gives a stable cone [10]. In this case it is obvious that all
stable cones will be found. However, the number of subsets that can be formed out of

Figure 2.5. Infrared unsafety of the midpoint seeded cone algorithm.With virtual corrections (left), the algorithm
finds two hard stable cones (dashed), centred around the two hard partons; when an infinitely soft gluon is
emitted between the two hard partons (right), an extra hard stable cone (solid, red) is found. Adapted from [31]

3As for fixed cones, a workaround for this problem might be to use IRC safe jets as seeds. However, this makes
the procedure inefficient from a computational point of view.
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N pseudo-particles is 2N , so the algorithm becomes computationally impractical for
a large number of particles. A much faster procedure to find stable cones is provided
by the seedless infrared safe cone (SISCone) algorithm [9]. The main idea behind
SISCone is to exploit methods borrowed from computational geometry to efficiently
move circles of radiusR around the y–ϕ plane until all stable cones are found. In fact,
this can be performed in Nn n( ln )6 steps. Furthermore, it is possible to show that the
hard stable cones found with the SISCone procedure are IRC safe.

Overlapping cones. After all the stable cones have been found, many of them will
have particles in common, i.e. they will overlap. One then needs a procedure to
decide how to move from a set of stable cones, which at this stage are commonly
referred to as ‘proto-jets’, to the list of the final jets. The current way to deal with
overlapping cones is the split–merge procedure [8]. One starts with the proto-jet for
which the scalar sum of the transverse momenta of its constituents (i.e. the first sum
in (2.2)) is the largest. Let us call this proto-jet pa and look for the closest (in the y–ϕ
plane) proto-jet pbthat overlaps with pa. If this is not found, pa is considered to be a
jet and is removed from the list of proto-jets. Otherwise, the two proto-jets are
merged into a single proto-jet if the scalar sum of transverse momenta of the shared
particles is more than a fraction f (normally chosen to be 0.5 of 0.75) of the scalar
sum of transverse momenta of proto-jet pb. If this is not the case, the shared particles
are assigned to either of the proto-jets, currently each particle to the jet whose axis is
closer. This is repeated until the hard proto-jet has no overlap with any other proto-
jet, in which case it is called a jet and removed from the list of proto-jets. The split–
merge procedure continues with the other proto-jets until no proto-jets are left. A
viable alternative is the split–drop procedure [11], in which the shared particles are
attributed to the proto-jet with the largest scalar sum of constituents’ transverse
momenta and the remaining particles belonging to the jets with a smaller scalar sum
of the constituents’ transverse momenta are simply eliminated. This is an example of
a procedure in which ‘dark towers’ are created, i.e. objects that are not clustered with
any jet. Dark towers are common in cone algorithms and have been dealt with in a
number of different ways [12]. The simplest seems to be to run the jet algorithm over
and over until no dark towers are left unclustered [13].

An unwanted feature of the split–merge procedure is that, in the presence of many
soft particles, the shapes of well-separated hard cones are not perfect circles in the
y–ϕ plane, as shown in figure 2.6. Not only is their shape irregular, but it is also
known only after the whole jet-finding procedure is terminated. This makes it difficult
to subtract a known uniform background on an event-by-event basis, as will be
discussed in more detail at the end of this section. Surprisingly enough, circular cones
can instead be achieved using sequential algorithms, the topic of the next subsection.

2.1.2 Sequential algorithms

Sequential algorithms reconstruct jets by clustering particles pairwise until no particles
are left. We will first discuss the general features of sequential algorithms developed
for e+e− collisions and later introduce their counterparts in hadron collisions. As for
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cone algorithms, the starting point is a set of pseudo-particles, which can be either true
particles, or the result of the recombination of one or more particles.

Electron–positron annihilation. In e+e− sequential algorithms, one considers all pairs
of pseudo-particles and finds pi and pj, the ones for which a suitable distance measure
yij is the smallest. The two pseudo-particles are then recombined into a new pseudo-
particle, for instance by simply adding their four-momenta pi and pj. The procedure
is repeated until no pseudo-particles are left. If we have N initial particles, the
algorithm goes through N steps. At each step, one stores the minimum distance
between all pairs of particles and calls it yn, with = …n N1, , . One then introduces a
resolution ycut and, if >y yn cut, classifies an event as having n jets, whose momenta
are those of the n pseudo-particles left at the nth stage of the clustering procedure.
The n-jet rate Rn(ycut) is defined as the fraction of events having >y yn cut.

The two main ingredients that determine the behaviour of sequential jet
algorithms are the distance measure and the recombination procedure. A simple
example of a distance measure is the invariant mass of pi and pj. This is implemented
in the JADE algorithm [15]:

=
+( )

y
p p

Q
, (2.3)ij

i j(J)

2

2

where Q is the centre-of-mass energy of the e+e− collision. This measure is by
construction IRC safe, because it vanishes when either pi or pj is soft, or when the pair
is collinear. Unfortunately the JADE algorithm has an unwanted feature, which is

Figure 2.6. Jets reconstructed with the SISCone algorithm, with radius R = 1 and a split–merge procedure to
deal with overlapping cones corresponding to f = 0.75 [14]. Cells with the same colour are clustered within the
same jet.
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easily understood if one considers a configuration in which a hard quark–antiquark
pair, flying in opposite directions, is accompanied by two soft gluons, one collinear to
the quark and the other to the antiquark. In this situation, depicted in figure 2.7, it is
possible that the algorithm, instead of clustering each gluon to the parton to which it
is collinear, clusters the two gluons together, creating a soft large-angle pseudo-
particle, which later on will be clustered either with the quark or with the antiquark.
Therefore, one of the two gluons will be attracted towards a particle which is far away
in angle. This is not ideal, because the momenta of each jet should closely correspond
to those of the partons which have initiated them, in particular by including as much
as possible the corresponding successively radiated partons. This feature also creates
complications from the point of view of all-order QCD calculations, as will be
discussed in the next chapter. An improved distance that provides a solution to the
problem of the JADE algorithm is provided by the Durham algorithm [16]:

θ= −( )( )
y

E E

Q
2

min ,
1 cos , (2.4)ij

i j
ij

(D)
2 2

2

with Ei and Ej the energies of pseudo-particles pi and pj and θij their relative angle.
The above distance is, as needed, IRC safe, and at small angles reduces to the
relative transverse momentum (squared) of the softer particle with respect to the
harder. The Durham algorithm does not create spurious large-angle jets, so collinear
bunches of particles are clustered into the same jet. A more sophisticated variant of
the Durham algorithm is the Cambridge algorithm [17]. This clustering procedure is
aimed at reconstructing the typical sequence of gluon emissions, which occur
predominantly at successively decreasing angles. At each step, the Cambridge
algorithm finds the pair of pseudo-particles with the smallest angular distance

θ= −v (1 cos )ij ij . Then, one computes their distance yij
(D), as given by (2.4). If

<y yij
(D)

cut, the two particles are merged, otherwise the object with the smaller energy
is stored as a jet and removed from the list of pseudo-particles.

Hadron collisions. Both the Durham [18] and the Cambridge [19] algorithms have
been generalised to hadron collisions. In this context, the algorithms are usually run
in a different way with respect to e+e− annihilation, in that, as for cones, one is
interested in the number of jets in an event, even without having specified a jet

Figure 2.7. Creation of a soft large-angle jet out of two gluons with the JADE algorithm. The red hoops
indicate which partons will be clustered together by the jet algorithm. The gluon on the left is not clustered with
the parton to which it is collinear.
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resolution [20]. Let us consider the Durham algorithm first, which is called the kt
algorithm in the context of hadron collisions. At each step, one considers the pair of
pseudo-particles pi and pj with the smallest distance (which we call the ‘kt distance’)

ϕ ϕ=
Δ

Δ = − + −( )( ) ( )d p p
R

R
R y ymin , , , (2.5)ij i j

ij
ij i j i jt

2
t
2

2

2
2 2 2

where R is a parameter that plays the role of a jet radius4. One then finds the distance
of pi and pj from the beam:

= =d p d p, . (2.6)i i j jB t
2

B t
2

If the minimum among d d d, ,ij i jB B is the mutual distance dij, then pi and pj are
recombined into a single pseudo-particle. Otherwise, if that minimum is diB (or djB),
pseudo-particle pi (or pj) is removed from the list of pseudo-particles and added to
the list of jets. Similarly, for the Cambridge algorithm, known as the Cambridge/
Aachen algorithm in this context [19], the distance dij is given by just ΔR R/ij

2 2 and
= =d d 1i jB B and the procedure runs in the same way as for the kt algorithm. Note

that, in hadron collisions, the distance measures do not need to be infrared safe. In
fact, as for cone algorithms, the quantity that has to be IRC safe is the momenta of
the jets that have a transverse momentum above a given threshold.

As can be seen from the above discussion, sequential algorithms are easier to
understand from a theoretical point of view, in that they are manifestly IRC safe and
do not present the issue of the same pseudo-particle being assigned to different jets, as
happens for overlapping cones. In practice, until very recently, sequential algorithms
had some practical issues which made them less attractive than cone algorithms for
hadron collisions. The first issue is that a naive implementation of sequential
algorithms scales as N3 with the number of initial particles N. In fact, computing
the minimum of the mutual distances between pairs of particles requires N2 numbers
and this minimisation has to be performed N times, until no pseudo-particles are left.
However, the particles pi and pj that have the smallest distance need to be nearest
neighbours in the y–ϕ plane. This fact is evident for the Cambridge/Aachen, and has
been shown for the kt algorithm in [21]. In fact, if pti < pt j, if there exists another
particle pl such that ΔRil <ΔRij, then necessarily = Δ <d p p R R dmin( , ) /il ij

2
i l ilt
2

t
2 2 , in

contradiction with the fact that dij is the minimum of the kt distances. This finding
triggered a huge improvement in the speed of implementations of sequential
algorithms [21]. One can in fact use methods from computational geometry to look
for nearest neighbours in the y–ϕ plane and reduce the overall problem of finding jets
with the kt and the Cambridge/Aachen algorithms to scale as N Nln [21]. The second
problem with sequential algorithms such as the kt or the Cambridge/Aachen is that, in
the presence of many soft particles, the boundary of each hard jet in the y–ϕ plane is
very irregular, as can be seen from the examples in figure 2.8. Furthermore, this
boundary is known only a posteriori, after the algorithm has finished reconstructing all
the jets. This makes it painful to subtract from each jet the contribution of a uniform

4Note that, unlike in e+e− annihilation, the distance in (2.5) is dimensionful, given the fact that, in hadron
collisions, it is not immediate to identify a typical hard scale.
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background noise. However, this problem has been elegantly solved by considering
the family of generalised kt algorithms identified by the distances

=
Δ

= =( )d p p
R

R
d p d pmin , , , , (2.7)ij i

p
j
p ij

i i
p

j j
p

t
2

t
2

2

2 B t
2

B t
2

with p a parameter. For p = 1 and p = 0 one obtains the kt and Cambridge/Aachen
algorithms, respectively. For = −p 1 one obtains a novel procedure, called the
‘anti-kt’ algorithm. Even in the presence of many soft particles, well-separated hard
jets obtained with the anti-kt algorithm, as shown for instance in figure 2.9, have
precisely the shapes of circles in the y–ϕ plane [14]! An intuitive explanation of this
fact resides in that, while the kt algorithm starts clustering particles starting from the
softest ones, the anti-kt does the opposite, i.e. it clusters soft particles around the
hardest ones, which remain more or less fixed. This unexpected feature explains why

Figure 2.9. Jets reconstructed with the anti-kt algorithm [14]. As in previous examples, cells with the same
colour are clustered in the same jet.

Figure 2.8. Jets reconstructed with the kt (left) and the Cambridge/Aachen (right) algorithms, corresponding to
the same jet radius R = 1 [14]. Cells with the same colour are clustered within the same jet.
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all LHC experiments use the anti-kt as a default choice. In spite of its practical
advantages, the anti-kt clustering procedure is somehow unrelated to the pattern
of QCD radiation, which was one of the motivations for introducing sequential
algorithms. For instance, one cannot introduce a jet resolution parameter based on
the anti-kt distance to define jet rates, because this would be infrared unsafe. The
standard procedure to define jet rates is to find all anti-kt jets and classify an event
as having n jets, if only n jets have transverse momenta above a given threshold. For
experimental analyses in which it is important to understand the substructure of jets
(e.g. in boosted object searches, see chapter 4), other algorithms, such as the
Cambridge/Aachen, have been exploited. In fact, LHC experiments consider a
variety of jet algorithms and do not stick to the anti-kt.

2.1.3 Common issues with jet algorithms

We end this section by discussing two issues that are common to all jet algorithms.
The first is the problem of determining the correct ‘jet energy scale’, i.e. assessing the
‘true’ value of a jet’s momentum out of what is observed in the detectors. The second
is the effect of the recombination scheme, the procedure used to determine the
momentum of a jet out of the momenta of its components.

Jet energy scale and removal of a uniform background. Since jets are the main objects
that enter physics analyses in hadron collisions, it is crucial to be able to reconstruct
their momenta as accurately as possible from the information obtained from the
detectors. In fact, jet distributions, for instance those in jet transverse momentum or
invariant mass, fall steeply with the increase of these variables, so that a migration of
events between bins of such distributions due to an incorrect assignment of the
energy of a jet has a huge effect on their overall shapes, undermining their correct
interpretation. For instance, a peak in the invariant mass of two jets might reveal the
presence of a new particle that decays hadronically, such as a Z′, a heavier partner of
the Z boson, decaying into a quark–antiquark pair. The effect of a mis-measurement
of the transverse momentum of jets might result in a broadening of the peak, which
therefore becomes indistinguishable from QCD jet production.

The first serious issue is the correct determination of the energy of a jet out of the
corresponding calorimetric deposits, which is commonly referred to as the problem of
‘jet energy scale’. In practice, one tries to find the correction factor to be applied to the
observed transverse momentum (or transverse energy) of a jet, to obtain its actual
value, the one to be used in physics analyses. This procedure, commonly referred to as
‘calibration’, is very complicated, has to be repeated for each jet algorithm and is
strongly dependent on the specific experimental set-up. This is why we will not
attempt to describe all the experimental procedures needed to perform jet calibration,
for which the interested reader is referred to experimental notes (e.g. [8, 22, 23]). Here
we will instead highlight the main sources of uncertainties and discuss in some detail
one detector-independent issue, the removal of a uniform background.

From a purely experimental point of view, one needs to take into account, for
instance: the segmentation of calorimeters, whose cells have a finite size, which
might be different in the central and in the forward/backward regions; the
availability of tracking information, i.e. the fact that charged particle momenta
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can be reconstructed only in a central region; noise in the detectors, as well as
imperfections, such as cracks, transition regions, or even faults; and unstable
particles, whose decay products might fall in different parts of the detector. These
are just examples of the many issues that experiments have to face when performing
jet calibration. Some of these problems can be tackled offline, for instance by
sending a beam of hadrons of known energy against the detectors and studying their
response. Such offline tests have to be validated when the experiment is running. One
common procedure consists in checking that the transverse momentum of a jet is the
same as that of a well-measured object (e.g. a photon) recoiling against it.

Even if the momentum of jets is known with infinite precision, all jet observables
in hadron collisions are contaminated by a large background that has nothing to do
with the high-energy collisions one is interested in. A first source of background is
the so-called PU, secondary low-energy collisions that occur at every crossing of
the beams. The size of this effect at a high-luminosity machine such as the LHC
can be appreciated from figure 2.10, where one can see the peak number of
interactions per beam crossing, as recorded by the CMS detector as a function of
time during the first high-energy runs of the LHC. These numbers will increase in the
second run of the LHC, with 55 PU events expected for an instantaneous luminosity

= × − −2 10 cm s34 2 13 and as many as 200 PU events at = × − −7 10 cm s34 2 13 .
Another source of background is the so-called ‘underlying event’ (UE), i.e. beam-
remnant interactions. These happen because, in every hadronic collision, the
remainders of the collision of the incoming hadrons are coloured particles and
hence can interact via the strong force. Only rarely can these interactions give rise to
a secondary hard collision, this occurrence being referred to as ‘double-parton
scattering’. More commonly, the remnants undergo a number of low-energy
collisions, producing a large number of soft hadrons, many of which can be
observed in regions of the detectors where hard jets are typically tagged. These
are known as the ‘diffuse’ component of the UE, whereas double-parton scattering is

Figure 2.10. The peak number of interactions per beam crossing recorded by the CMS experiment during the
first high-energy runs of the LHC [24].
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referred to as its ‘point-like’ component. PU and UE have in common the fact that
they produce a yield of particles that is roughly uniform in rapidity and azimuth.
Just to give an idea of the size of these effects, at its highest energy, the UE at the
LHC will produce up to 10–15 GeV of transverse momentum per unit rapidity,
whereas the effect of PU in the higher luminosity phase of the LHC is estimated to
be of the order of 100 GeV per unit rapidity [25].

The effects of detector noise, PU and UE cannot be cleanly separated and have to
be dealt with concurrently. A problem that can be solved in a detector-independent
way is the removal of a ‘uniform’ background, i.e. giving a fixed amount of transverse
momentum ρ per unit rapidity and unit azimuth. If ρ is known with infinite precision,
and each jet pJ is just a patch of fixed area A in the y–ϕ plane, we have

ρ≃ −p p A, (2.8)t,J
true

t,J
meas

where pt,J
true is the actual value of the transverse momentum of the jet and pt,J

meas is its
measured value5. In practice, however, ρ and A are not known a priori. Therefore,
one needs to find a way to assess the sensitivity of a jet to a uniform background and
a sensible strategy to measure ρ.

A recent proposal to quantify a jet’s sensitivity to a uniform background is through
the notion of ‘active area’ [25]. This is defined by generating a set g of ultra-soft ‘ghost’
particles g{ }i , with νg ghost particles per unit area in the y–ϕ plane and average
transverse momentum 〈 〉gt , and considering, for each hard jet pJ, the quantity

ν∣ =( )A gJ { }
(J)

, (2.9)i
g

g

5

where (J)g5 is the number of ghost particles of the set g clustered within the jet ‘J’.
One then defines the active area of jet ‘J’ in terms of the following limit:

=
ν →∞

( )A A glim J { } , (2.10)J i
gg

where the average is over all possible sets of ghosts, provided ν 〈 〉gg t stays much smaller
than the transverse momentum of the considered hard jets. This procedure gives an
idea of how ‘catchy’ a given jet algorithm is when many soft particles are present.

The second problem one has to solve is how to estimate the size of the
background transverse momentum density ρ. The proposal that is currently used
by LHC experiments is based on the observation that, in a busy environment with a
few hard jets and many soft jets, the ratio between the transverse momentum of most
jets and their area is roughly constant. The only exception to this scaling is
constituted by hard jets. In fact, if all jets were produced by a uniform background,

5For simplicity, we have neglected the fact that the transverse momentum is a two-dimensional vector.
Therefore, the procedure in (2.8) is strictly correct only if the transverse momentum of a jet is reconstructed
through the scalar sum of its constituents’ transverse momenta, as in (2.2).
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the transverse momentum of each jet would be proportional to the jet area. Since in
a regime with a high PU the number of soft jets is much larger than that of hard jets,
one can use the following estimator [26]:

⎛
⎝⎜

⎞
⎠⎟ρ = p

A
median , (2.11)J

t J

J

and correspondingly find estimators for the standard deviation of ρ. Note that, in the
absence of PU, the above equation provides a measurement of the size of the diffuse
component of the UE. Then one can obtain, on an event-by-event basis, the
subtracted transverse momentum of a jet by replacing, in (2.8), the generic area A
by AJ, the jet area defined in (2.10). The subtraction can be improved by taking into
account the vectorial nature of transverse momentum [26]. Also, if performed before
jet calibration, the procedure described above eliminates all detector noise that gives
a uniform background.

Let us now look in more detail at the active area of the algorithms we have defined
so far, in particular of jets defined with SISCone with a split–merge procedure, and
with the kt, Cambridge/Aachen and anti-kt sequential algorithms. The active area of
an isolated hard jet defined with a seedless cone algorithm (such as e.g. SISCone)
with radius R is not πR2, as one would naively expect. In fact, simulations of dijet
events show that the active area of each hard jet is a mild function of the jet’s
transverse momentum, with an average around πR /22 (see the left-hand panel of
figure 2.11). The reason for this value relies on the split–merge procedure of cone
algorithms and is better understood by considering the example of an isolated stable
cone containing a single hard parton [25] . If we add a uniform background of ghost
particles, we obtain new soft stable cones made up of only ghost particles. The
maximum overlap between the hard cone and a soft stable cone corresponds to
the situation where the boundary of the soft cone touches the centre of the hard
cone, as depicted in the right-hand panel of figure 2.11. From geometrical
considerations, one finds that the fraction of particles that is contained in both cones
is = − ≃πf 0.3912

3
3

2max , which is below the commonly chosen overlap thresholds
f = 0.5 or f = 0.75. This means that the common particles will be assigned to either jet,
according to which jet axis is closer. Indeed, if one considers all possible ghost stable

Figure 2.11. Left: the average area of a jet defined with the SISCone algorithm, as a function of the jet transverse
momentum [25]. Right: maximal overlap between a hard stable cone, (‘Hard’, black) and a cone made up of
ghost particles (‘Soft’, blue). The picture, drawn by the author, is adapted from [25].
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cones that have a maximal overlap with the hard cone, only particles within a radius
R/2 from the axis of the hard cone will be part of the hard jet, which will have now
an active area π=A R /4J

2 . Addition of extra QCD radiation increases this value, so
the average area of hard jets is close to πR /22 with mild fluctuations. As expected, the
average active area of jets obtained from the kt and the Cambridge/Aachen
algorithms has and a greater dependence on the transverse momentum of the jets,
as can be seen from the corresponding curves in figure 2.12, and large fluctuations
(not shown). This in not the case for the anti-kt algorithm, which confirms the intuitive
picture of figure 2.9. The average active area of anti-kt hard jets is πR2 with very small
fluctuations and basically no dependence on the jet transverse momentum [14]. Note
that it is possible to have circular hard jets in the y–ϕ plane using cone algorithms as
well, at the cost of abandoning the split–merge procedure. For instance, one can use
SISCone to find all stable cones and a progressive removal approach to deal with
overlapping cones [27]. This procedure looks for the hardest stable cone and calls it a
jet. This cone is then removed from the list of stable cones and its particles are
removed from the list of particles. The procedure is then repeated until no stable
cones are left. SISCone with progressive removal scales as N Nln2 for N input
particles. Therefore, it performs slightly worse than anti-kt, whose current
implementation scales at most as N3/2 [14].

Having a quantitative notion of the area of a jet, the procedure of subtracting a
uniform background becomes possible on an event-by-event basis for any jet
algorithm, not only for those whose jets have a fixed area. However, one needs to
take into account that background is not completely uniform in rapidity. For
instance, detector noise is different according to which parts of the experimental
apparatus, in particular of the calorimeters, one considers. One can in principle
devise rapidity-dependent estimators for ρ, for instance by dividing the y–ϕ plane
into regions that are small enough to have a smooth function of y, but enough jets so
that the estimate in (2.11) can be trusted. It is, however, more complicated to

Figure 2.12. The mean value of the active area of the four algorithms described in the text, for jets initiated by
gluons [14].
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determine the correct jet energy scale for jets that cluster pseudo-particles in an
unpredictable way, as happens for the kt and Cambridge/Aachen algorithms. This is
why the anti-kt, whose jets are localised in the y–ϕ plane, is the preferred algorithm
for measurements involving hard-jet transverse momenta.

Recombination schemes. We conclude this section by discussing various procedures
that can be used to merge different particles into a single pseudo-particle. These
procedures are known as ‘recombination schemes’. At each step of a sequential
algorithm, the recombination scheme determines how the momenta pi and pj of two
pseudo-particles have to be recombined into a new pseudo-particle of momentum pij.
Three recombination schemes use the particles’ energies and three-momenta, as
follows:

• E-scheme: = +p p pij i j, i.e. addition of pseudo-particles’ four-momenta.
• E0-scheme: = +E E Eij i j and ⃗ = ⃗ + ⃗p p p E( )/ij i j ij, so that the resulting jet is
massless.

• P-scheme: ⃗ = ⃗ + ⃗p p pij i j and = ∣ ⃗ ∣E pij ij , so as to have again a massless jet.

Other recombination schemes determine the transverse momentum p ijt, , the rapidity
yij and the azimuthal angle ϕij of the new pseudo-particle out of the transverse
momenta, rapidities and azimuths of the parent pseudo-particles [3]. They can all be
obtained from the relations

ϕ
ϕ ϕ

= +

=
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+
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+

p p p

y
wy w y

w w
w w

w w

,

,

,

(2.12)

ij i j

ij
i i j j

i j

ij
i i j j

i j

t, t t

where wi can be, for instance, p it or p it
2. More recombination schemes can be

obtained by replacing transverse momenta with transverse energies, and rapidities
with pseudorapidities. The above schemes can be generalised to any number of
recombined particles and are not specific to sequential algorithms. In fact, they can
be used with cone algorithms to obtain the axis of a cone out of the momenta of the
pseudo-particles inside it, as shown in (2.2).

One of the effects of the recombination scheme is that of changing the sensitivity of
physical observables to the energy–momentum flow inside each jet. For instance,
variables such as the azimuthal angle between two jets are insensitive to QCD
radiation inside each jet if the recombination scheme adds three-momenta vectorially,
but not if it performs any of the weighted recombinations in (2.12) [28]. Although very
interesting theoretically, changing the recombination scheme might not be ideal from
an experimental point of view. This is specifically due to the fact that the transverse
momentum of a jet depends on the recombination procedure, so that jet energy-scale
calibration has to be repeated for each recombination procedure within the same jet
algorithm. Since jet calibration is a complicated procedure, experiments select not
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only a default jet algorithm, but also a default recombination scheme. For instance,
the LHC default is the anti-kt algorithm with the E recombination scheme. Note that
the two main LHC experiments, ATLAS and CMS, adopt slightly different choices
for the jet radius, so as to exploit the sensitivity of their detectors as much as possible
[22, 29]. It has to be stressed that there is nothing that prevents an experiment from
using a different jet algorithm for a specific analysis, or exploring a different
recombination scheme within the same jet algorithm.

Both this and the previous section have shown how difficult it is to move from the
intuitive concept of a jet as a huge deposit of energy in a detector to its rigorous
formulation in terms of an algorithmic procedure. The algorithms we have described
so far are the ones that have actually been used in high-energy physics experiments.
Their properties have been thoroughly tested and are well understood. In recent years,
however, in particular to make better use of jets as tools to discover new particles,
novel and sometimes unconventional ideas for reconstructing jets have been pro-
posed. The next section is devoted to presenting a number of these recent develop-
ments, so as to give the reader a sense of how the field might evolve in the future.

2.2 Novel jet clustering procedures
With more and more experimental analyses exploiting the properties of jets, it is very
difficult to follow closely the development of jet algorithms. As a basic reference for
the interested reader, many algorithm definitions and codes can be found in the
computer library FASTJET [30]. For an overview of novel jet algorithms, as an
alternative to those presented in the previous sections, the reader is referred to topical
reviews on jet physics such as [31]. In this section we wish to present some ideas on how
it is possible to ‘play’ with jet definitions so as to be able to extract useful information
about the observed jets. The examples we have chosen aim to highlight various
complementary ways to approach the problem of finding and characterising jets.

Inclusive jet algorithms in e+e− annihilation. Let us consider for instance the
kt-algorithm in hadron collisions. The way it reconstructs jets is referred to as
‘inclusive mode’. There is however the possibility of running the kt-algorithm in
‘exclusive mode’, in which one fixes a jet resolution dcut and each event is classified as
having n jets if and only if the minimum of the mutual distances dij and of the
distance of each particle with the beam diB is larger than dcut. All algorithms we have
presented for e+e− annihilation work in exclusive mode, whereas inclusive mode is
the typical way of reconstructing jets in hadron collisions. Due to the fact that e+e−

colliders represent a less intricate environment, it might be very useful to have
inclusive jet algorithms defined there as well. How this is possible can be understood
by considering, in a hadron collider, particles that are quasi-central, i.e. whose
rapidity is very close to zero. The energy of these particles is almost equal to their
transverse momentum. In particular, considering two particles pi and pj that are very
close in angle, we can approximate

θ= − ≃ Δ( )p p E E p p R2( ) 2 1 cos , (2.13)i j i j ij i j ijt t
2
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so that we can identifyΔRij
2 with the angular distance θ θ− ≃2(1 cos )ij ij

2. Therefore,
a suitable definition of inclusive generalised kt algorithms in e+e− annihilation
involves a distance between pairs of pseudo-particles

θ= −
−( )d E E

R
min ,

1 cos
1 cos

, (2.14)ij i
p

j
p ij2 2

as well as a distance with a ‘beam’, which is given by =d Ei i
p

B
2 [30, 32]. Then the

algorithm works as in hadron collisions: if, at any step, the minimum of all distances is
diB, pseudo-particle pi is considered as a jet and removed from the list of pseudo-
particles. If the minimum distance is dij, pseudo-particles pi and pj are recombined as
in the exclusive mode of the algorithm. The procedure stops when no pseudo-particles
are left. Similarly, it is also possible to devise an e+e− version of SISCone [32]. With
these adaptations, one can study the behaviour of jet algorithms in a simpler
environment than hadron collisions. For instance, in e+e− annihilation it is possible
to compute jet rates in QCD with high precision [32], or even gain an analytical
understanding of the properties of various algorithms, and exploit this knowledge to
devise better algorithms for hadron colliders [33].

Quantum jets.As explained at the beginning of the chapter, the main purpose of a jet
algorithm is that of mapping a set of final-state particles into a small number of jets,
whose momenta should be close to those of the primordial hard quarks and gluons
produced in a high-energy collision. This perfect match is only guaranteed in a case
where the initial hard partons are accompanied by a set of infinitely soft emissions
and collinear splittings. In real life, it might happen that the number of jets an event
is mapped into does not reflect the original hard event and moreover that this result
depends on the jet algorithm. A notion that emphasises this intrinsic uncertainty in
the interpretation of events is that of ‘quantum jets’, or simply ‘Q-jets’ [34]. They are
constructed out of a ‘quantum’ jet algorithm, in which an event is not mapped into
a number of jets with certainty, but with a given probability. More specifically, a
quantum jet algorithm is similar to a ‘classical’ sequential algorithm, with the
following modifications occurring at each stage:

1. A weight ωij is computed for every pair of pseudo-particles pi and pj.
2. A pair pi and pj is chosen with probability ω ωΩ = ∑ </ij ij k l kl and merged into

a single pseudo-particle.

The classical procedure is recovered if ω δ= −d d( )ij ij min , where dij is an arbitrary
IRC safe distance measure and dmin is its smallest value among all possible pairs of
pseudo-particles. The procedure is repeated Ntree times, each time giving a ‘tree’ of
clusterings, the probability of each tree being ∏ Ωijmergings . A particularly interesting
class of weights is

⎡
⎣⎢

⎤
⎦⎥ω α= − −d d

d
exp . (2.15)ij

ij min

min
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with α a positive number called ‘rigidity’. Note that, for α → ∞ the pair with the
minimum dij will always be chosen, thus recovering the corresponding classical
sequential algorithm. This is very close to what happens in quantum mechanics,
where quantum trajectories are distributed according to a probability that is peaked
around classical trajectories, with the role of the parameter α played by the constant

ℏ1/ . The trees constructed out of this probabilistic interpretation are called Q-jets.
The effect of classical versus quantum jets can be appreciated by considering
observables that are sensitive to the clustering sequence. One of these observables
is the so-called pruned-jet mass, the invariant mass of a jet in which, at each
clustering stage, one of the two particles that is to be merged is discarded or kept
according to some ‘pruning’ criterion, which will be discussed in detail in chapter 4.
The number of pseudo-particles that will enter each jet will be strongly affected by
the clustering sequence, and hence the value of the pruned-jet mass will be very
different according to the chosen sequential algorithm. This can be appreciated in
figure 2.13, where one can see the distribution in the invariant mass of a pruned jet,
obtained by running several times the classical and quantum versions of the kt and
Cambridge/Aachen jet algorithms. One can see that the classical versions of the
algorithms give the same values of jet mass for each of the considered trees. Note
that the two values are different, highlighting the strong dependence on the
algorithm of this observable. In the quantum case, for α = 1.0, closer to the classical
limit, one obtains two distributions, peaked around the corresponding classical
values. In a deeper quantum regime, for α = 0.01, the difference between the two jet
algorithms is somewhat washed out and one obtains two very similar distributions.
It seems then that quantum jets point to physical features of an event, rather than
being sensitive to artefacts induced by the choice of a specific jet algorithm. More
properties of Q-jets will be discussed in the context of the use of jets as discovery
tools in chapter 4.

Jet-finding as an optimisation procedure. Let us consider, as a starting point, a two-jet
event in e+e− annihilation. In line with the intuitive idea of a jet as a region where
energy deposit is maximised, one can find the direction that maximises the scalar
sum of the projection of momenta along it. This maximum is called the thrust

Figure 2.13. The distribution in the invariant mass of a pruned jet for the classical kt and Cambridge/Aachen
algorithms and their quantum versions with α = 1.0 (left) and α = 0.01 (right) [34].
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and the direction ⃗nT maximising the sum in the above equation is called the thrust
axis. In e+e− annihilation, for each event, one can cluster all particles into two back-
to-back jets as follows: the thrust axis can be identified with the jet axis and particles
can be assigned to either jet according to whether ⃗ · ⃗p ni T is larger or smaller than
zero. An analogous procedure, which coincides with that in (2.16) for two back-to-
back jets but which is generalisable to an arbitrary jet configuration, is to minimise a
quantity called 2-jettiness n n( , )2 1 2; , with = ⃗n n(1, )i i two light-like vectors. The 2-
jettiness is defined as

∑ ∑=
∣ ⃗ ∣

· · }n n
p

n p n p( , )
1

min{2 , 2 . (2.17)

i
ii

i i2 1 2 1 2;

One can introduce a jet radius R and a ‘beam jet’ that collects all particles that are
not clustered with the two jets by redefining the 2-jettiness as follows:

⎧⎨⎩
⎫⎬⎭∑ ∑=

∣ ⃗ ∣
· ·

n n
p

E
n p
R

n p
R

( , )
1

min ,
2

,
2

. (2.18)

i
ii

i
i i

2 1 2
1

2
2

2
;

Once the two directions ⃗n1 and ⃗n2 have been found, particle pi is assigned to either jet,
or to the beam jet, according to which is the minimum between n p R n p R2( )/ , 2( )/i i1

2
2

2

and Ei. Similarly, one can find N jets …n n n{ , , , }N1 2 by minimising N-jettiness,
defined as [35, 36]

⎧⎨⎩
⎫⎬⎭∑ ∑… =
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E
n p
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n p
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n p
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2
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2
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1 2
1

2
2

2 2
;

The procedure can also be defined iteratively, first finding one jet of radius R by
minimising 1-jettiness, then removing all particles within that jet and repeating the
procedure with the remaining particles, until no particles are left. In this case one
finds that isolated hard jets are perfect cones of radius of order R.

Another proposal [37] that exploits a maximisation procedure consists in defining
the momentum of a jet pJ by considering all possible sets of particles α and for each
set constructing the total momentum of the set

∑=
α∈

αp p . (2.20)
i

i

The momentum of a jet pJ is the vector αp that maximises a certain ‘jet function’

αJ p( ), with

⎛
⎝⎜

⎞
⎠⎟= =α α

α

α
α αJ p f E

m
E

m p( ) , , . (2.21)
2

2 2
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In order to match the intuitive idea of a jet as the footprint of a massless parton,
αJ p( ) should increase with increasing energy and decrease with increasing mass. A

suitable proposal for e+e− annihilation is then6

= −α α
α

α
J p E

R
m
E

( )
1

. (2.22)
2

2

The algorithm then proceeds by iteration. One finds the momentum αp that
maximises αJ p( ), calls it a jet with momentum pJ and removes all the particles
belonging to the set α. The procedure is then repeated with the remaining particles
until no particles are left. Jets defined with this procedure are again cones of nearly
fixed radius R. It has been noted that, with this algorithm, energy is very localised
inside these cones, with only infinitely soft particles allowed to live at the cone
boundaries.

It has remarkably been shown that [37], in e+e− annihilation, the minimisation of
1-jettiness and the maximisation of the above jet-function lead to the same jets.
Moreover, the two procedures are equivalent to the SISCone jet algorithm, when
progressive removal is applied to deal with overlapping cones. In fact, one can
construct the following function of a candidate jet momentum = ⃗α α αp E p( , ), and of
a light-like jet axis = ⃗n n(1, ):

= − ·
α α

α)M p n E
n p
R

( ,
2

. (2.23)
2

It is possible to show [35] that maximisingM over all possible αp and n simultaneously
yields a maximum for the jet function αJ p( ), a minimum for the 1-jettiness n( )1; and a
hard stable cone. This property makes it possible to use the methods of computational
geometry to find jets defined with an optimisation procedure. In fact, one can first find
all stable cones and then determine the one that maximises the jet-function, or
minimises 1-jettiness. Note that the extension of the three procedures to hadron
collisions does not lead to the same jets, due to different ways of defining the
transverse momentum of a jet. However, jets are still nearly fixed cones with a radius
of order R.

There are many lessons that one can learn from the above discussion. An
important one is that there can be different procedures that lead to qualitatively
similar jets. It is then only a matter of finding which one makes it possible to achieve
the goals it was designed for in the fastest and most efficient way. Exploring different
jet-finding philosophies makes it easier to find new procedures that can lead to jets
that are qualitatively different from those already known. This in turn can lead to
even more possibilities to exploit jets as tools for high-energy physics.

6 In the original source [37], R2 is called β1/ . As suggested in [35], we change the notation in analogy with that
in use for other jet algorithms.
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Chapter 3

QCD for jet physics

One the most amazing features of jet physics is that, despite jets being complicated
objects constructed out of many hadrons, their basic properties can be understood
in terms of the elementary degrees of freedom of QCD, i.e. quarks and gluons.
A formal introduction to QCD is beyond the scope of this book and is now textbook
material [1, 2]. Here we will review the aspects of QCD that are crucial for jet
physics.

QCD is a quantum field theory describing the interactions of elementary
fermions, the quarks, mediated by spin-1 gauge particles, the gluons. As explained
in the introduction, the known quarks are six, organised in three families. Their
properties are summarised in table 1.1.

Besides electric charge (and weak isospin), each quark possesses an additional
conserved charge, the colour. More specifically, each quark has three colours (say
red, green and blue). Coloured particles, such as quarks, can interact with the strong
force in a similar way to which electrically charged particles interact with the
electromagnetic force. The strong force is mediated by spin-1 particles, the gluons,
like the electromagnetic force is mediated by photons. There is, however, a
fundamental difference between the electromagnetic and the strong force. When
an electron emits a photon, it does not change its electric charge, whereas a quark
emitting a gluon changes its colour. This means that gluons can take away colour
and are colour-charged themselves, whereas photons are electrically neutral.
Specifically, the gluons can have eight different colours. Therefore, while in quantum
electrodynamics (QED) the transition amplitude for an electron emitting a photon is
only proportional to the electron charge e, in QCD one has to specify not only the
strong interaction coupling constant gs (the analogue of e), but also the probability
that a quark of a colour j transforms into a quark of a colour i after the emission
of a gluon. This gives rise to a transition matrix t ,ij

a where a is the colour of the
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emitted gluon. We have then eight transition matrices, which form a Lie algebra
under commutation, namely:

=t t if t[ , ] . (3.1)a b abc c

Their commutation relations are those of the generators of the Lie group SU(3),
which is in fact the gauge group of QCD. The symbol f ,abc totally antisymmetric in
the indices a b c, , , embodies the so-called ‘structure constants’ of the group SU(3).

Before discussing jet formation, we need to address the fact that no coloured
particles are observed in our detectors. Despite this, for high-energy processes, we
can compute hadronic cross sections using transition probabilities between unob-
served quarks and gluons, and surprisingly we obtain extremely good agreement
with experimental data. The key property that makes QCD predictive is asymptotic
freedom. The strength of the interactions in QCD is the strong coupling
α π= g /(4 ),s s

2 the analogue of the fine structure constant α π= e /(4 )2 in QED. As
in any quantum field theory, the value of αs that rules the magnitude of a given
transition probability depends on the typical scale of that transition. For instance,
the total production rate of hadrons in electron–positron annihilation depends on
α s( ),s with s the centre-of-mass energy of the electron–positron collision. The
coupling αs decreases for increasing momenta and vanishes for asymptotically large
momenta, giving rise to non-interacting quarks. QED has the opposite behaviour,
with the fine structure constant tending to the fixed value 1/137 for vanishingly small
momenta. What happens at low momenta for QCD? The coupling αs grows, until a
point at which we cannot calculate any further. In fact, except for rare exceptions, in
quantum field theory we can calculate only small deviations from the free behaviour
through perturbative expansions in the coupling. When the latter is large, such
expansions become meaningless and one needs to know how the full theory behaves.
In QCD, at low momenta quarks and gluons interact so strongly that they can no
longer exist as quasi-free objects, but are doomed to live confined to form colourless
objects, the hadrons.

We are now in a position to qualitatively understand jet formation. Suppose a
quark is produced in a high-energy process. The fact that it is ripped off from the
vacuum results in a huge instantaneous acceleration, similar to that experienced by
fast electrons colliding on a target. Similarly to how these electrons emit brems-
strahlung photons, e.g. x-rays, an accelerated quark radiates gluons. In fact, at high
energy the QCD coupling is small and, except for for the colour matrices ta, QCD
closely resembles classical electromagnetism. As in classical electrodynamics, gluons
are radiated preferably with small energies, collinear to their emitter, with a
probability density

θ α θ θ
θ∼P E E

E
E

d ( , ) ( )
d d

, (3.2)s

2

2

where E is the energy of the emitted gluon and θ is its angle relative to the emitting
quark. Note that the coupling αs is to be evaluated at the scale θE , the transverse
momentum of the radiated gluon with respect to the emitting quark. The most likely
configurations are those in which gluons are emitted at subsequently decreasing
angles. This gives an ensemble of highly collimated partons. This ‘branching’
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process stops when the angle and/or the energy of the last emitted parton are so
small that α θE( )s becomes large. At this point, the quark feels a strong interaction
from the neighbouring partons and hadrons are formed. We do not know how
hadronisation actually takes place. What we know is that models in which only
partons whose momenta are of similar size form hadrons provide the best
description of collider data. We can safely assume that, when the QCD coupling
becomes large, neighbouring partons gather together to form hadrons, without a
significant reshuffling of energy and momenta with respect to the parent partons.
This is why a highly energetic quark gives rise to a jet of highly collimated hadrons.
Of course, the momenta of the hadrons in a jet will be related to that of the parent
quark or gluon. More specifically, the change in the transverse momentum of a jet
induced by hadronisation is of the order of a small hadronisation scale (∼1 GeV), so
that the relative corrections (∼ p1 GeV/ t,jet) are expected to decrease with increasing
p .t, jet Furthermore, with increasing jet transverse momenta, given that the gluon
emission probability in (3.2) is proportional to α θ α θ∼E p( ) ( ),s s t, jet the angle of
emitted gluons such that the QCD coupling becomes of order one and hadronisation
takes place becomes smaller and smaller. This is why, at high transverse momenta,
jets are so collimated that their momenta are very close to those of the individual
quarks or gluons that have initiated them.

This very qualitative picture of jet formation is confirmed by the excellent
agreement between QCD theoretical predictions and experimental data. The rest of
this chapter will thus be devoted to presenting the basics of QCD that are needed to
understand jet physics and to describing the state-of-the art of QCD theoretical tools.

3.1 Collinear splitting in QCD
The most important quantity for jet physics that can be computed in QCD is the
probability that a parton of type a (quark q, or gluon g) splits into two partons of
type b and c. The reader might be surprised that it is possible to isolate an elementary
subprocess in a quantum theory, in which probabilities are computed by squaring
transition amplitudes. Consider then a parton of type a with a given four-
momentum pa. By collinear splitting we mean the production of two partons pb
and pc, quasi-parallel to pa, as displayed in figure 3.1. All partons can be considered
to be quasi-massless, in the sense that their invariant masses are much smaller than
their energies and momenta. In this case the probability to produce partons pb and pc
factorises into the product of the probability of producing pa, times a universal
factor, which can be interpreted as the elementary probability for the splitting

Figure 3.1. Pictorial representation of the splitting →a bc.
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→a bc [1, 2]. The splitting probabilities depend only on the type of parton involved
(quarks or gluons) and can be expressed as

θ θ
θ

α θ
π= −

→P z zP z
z z E

d ( , )
d

d ( )
( (1 ) )

2
. (3.3)a bc ba

2

2
s

In the above expression, θ is the angle between partons pb and pc, E is the energy of
parton pa and z is the fraction of the energy E carried by parton pb. By momentum
conservation, the energy of parton pc will be − z E(1 ) . For the splitting to take
place, parton pa needs to have a positive invariant mass squared, which is
approximately given by

θ= + ≃ −p p p z z E( ) (1 ) . (3.4)a b c
2 2 2 2

Note that the coupling has to be evaluated at the scale θ−z z E(1 ) , which is of the
order of the relative transverse momentum of partons pb and pc. The splitting
probability in (3.3) is large when the angle between pb and pc is small, i.e. pb and pc are
quasi-collinear. In this situation ≪p E .a

2 2 In the collinear limit θ → 0, the splitting
probability diverges. This is precisely the collinear divergence of QCD matrix
elements introduced in the previous chapter in the discussion about IRC safety.

There are four basic splitting functions in QCD, P z P z P z( ), ( ), ( )qq gq qg and P z( ).gg
Their expressions are [1]

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

= +
− = + −

= + − = − + − + −

P z C
z
z

P z C
z

z

P z T z z P z C
z

z
z

z
z z

( )
1
1

, ( )
1 (1 )

,

( ) (1 ) , ( )
1

1
(1 ) .

(3.5)
qq F

2

gq F

2

qg F
2 2

gg A

Some comments are in order. First of all, the prefactorsC T C, ,F F A are related to the
gauge group of the theory. In particular, for a gauge theory based on the Lie group
SU N( ),c with Nc the number of colours, we have

∑δ δ δ= = =
=

−
t t T t t C f f CTr( ) , , . (3.6)

a

N

1

1
a b ab

ik
a

kj
a

ij
acd bcd ab

F F A

c
2

The value of TF is conventional, and sets the normalisation of the matrices ta. We
adopt the convention =T 1/2,F giving

= − =C
N

N
C N

1
2

, . (3.7)F
c
2

c
A c

For Nc = 3 we have CF = 4/3 and CA = 3. Similar expressions hold in QED, with the
only difference that = =T C1, 1F F and =C 0,A so that the splitting of a photon into
two photons cannot occur. Both QED and QCD share the fact that splitting
functions can become singular when z is close to zero or one. This corresponds to the
fact that one gauge boson (gluon or photon) has vanishingly small energy, i.e.
becomes infinitely soft. This is precisely the soft divergence that was discussed when
the concept of IRC safety was introduced.

The basics of jet physics can be understood by analysing the splitting
probability in (3.3) and the splitting functions of (3.5). Suppose that an energetic
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parton pa (quark or gluon) is produced in a high-energy (i.e. ‘hard’ as opposed to
soft) collision and a splitting →a bc occurs. We have three possible scenarios:

1. θ ≪ 1, z arbitrary: this is the basic process underlying jet formation. Parent
parton pa splits into two partons pb and pc, close in angle. These will
subsequently branch to produce a cascade of quasi-collinear partons, which
will turn into highly collimated bunches of hadrons. An IRC safe jet
algorithm will likely cluster these hadrons as a single jet.

2. θ ∼ − ≪z z1, (1 ) 1, and either parton b or parton c is a gluon: a soft gluon
is emitted at a large angle. This soft gluon is in general coherently emitted by
all the hard partons in the event. Soft gluons at wide angles give rise to soft
hadrons in the region between the jets, whose angular distribution reflects the
colour connections of the hard emitters, the so-called ‘colour flow’ of the
event (see [1] for the exact definition of what a colour connection is). The fate
of such hadrons is either to be clustered with the nearest jet or, if too far
away, give rise to soft jets.

3. θ ∼ ∼z1, 1: a hard parton is produced, well separated from all other hard
partons in the event. This will further split into a bunch of collinear partons,
which will later hadronise and give rise to an extra jet.

QCD, in its perturbative formulation, is best suited to describe the third scenario. It
costs a power of the coupling αs to produce an extra jet. The requirement that all jets
are energetic (hard) and well separated in angle ensures that jet production rates can
be expressed as perturbative series in powers of α ,s which at high energies is indeed a
small expansion parameter. In this region, the collinear approximation we have
discussed so far gives only a qualitative picture of the behaviour of hadronic jets.
Instead, for a given order in α ,s one needs to compute the necessary QCD amplitudes
(generally through Feynman-diagram techniques [1, 2]), square them and integrate
over the momenta of all particles in the final state, the so-called multi-particle phase
space. Such perturbative calculations are extremely important for the quantitative
understanding of the dynamics of hadronic jets. In recent years, theoretical methods
to perform perturbative QCD calculations have seen enormous progress. Given the
importance of the topic, section 3.2 will be devoted to a general overview of the ideas
underlying perturbative QCD calculations and to an illustration of the most recent
advances. Despite the enormous success of such calculations in describing jet
production rates, many interesting measurements involve looking inside the jets to
unravel their structure. Such measurements normally require fixing a resolution
parameter whose size is much smaller than the typical energy of the jets. In such
situations, a naive application of QCD perturbation theory leads, in general, to series
that are poorly convergent. This is due to the appearance of large logarithms of two
widely separated energy scales at all orders in perturbative expansions. In this regime,
multiple soft and collinear branchings become relevant and one can use the universal-
ity of splitting functions to obtain approximate predictions for interesting jet
observables, either through analytical techniques (resummation) or through numer-
ical simulations (the so-called ‘parton-shower’ event generators). The relevant
features of both approaches will be discussed in section 3.3. The final aspect that
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needs to be discussed is the fact that jets are made of hadrons, not of quarks and
gluons. It is legitimate therefore to ask the question: given a prediction for a jet
observable in terms of quarks and gluons, will this be close to what we measure
experimentally? In other words, what is the effect of phenomena, such as hadronisa-
tion, which are beyond the domain of perturbative QCD? It is not possible to give a
mathematically rigorous formulation of the problem. Nevertheless, it is possible to
build realistic phenomenological models that, if successful in describing data, give
some insight on the dynamics of intrinsically non-perturbative phenomena. Their
implications for jet physics will be discussed in section 3.4.

3.2 Fixed-order QCD calculations
In this section we discuss the main theoretical techniques used for fixed-order QCD
calculations. These are predictions that are truncated at a given order in the QCD
coupling α .s Before discussing the general features of fixed-order calculations, we
discuss some elementary examples which, however, contain the relevant issues of
such calculations.

3.2.1 Leading-order calculations

Jet rates in e+e− annihilation. We consider e+e− collisions, in particular events
containing hadrons in the final state. Most such events are characterised by the
presence of two jets that are quasi-back-to-back, i.e. point in opposite directions.
They originate from the production of a quark and an antiquark, which undergo
several collinear splittings and then hadronisation. A relevant fraction of events
(around 10–20%) is characterised by the presence of three energetic and well-
separated jets. Here we wish to quantify this fraction. First, QCD tells us that these
events are due to the emission of a hard gluon from the original quark–antiquark
pair. Therefore, what we have to do is to first compute the probability for such an
emission to occur, differential in suitable kinematic variables spanning the phase
space of the emitted gluon. This is achieved by computing two contributions,
represented pictorially by the two Feynman diagrams of figure 3.2. Their sum gives
the quantum mechanical amplitude for the process under consideration, at the
lowest order in QCD perturbation theory. This order is called the leading order
(LO). The obtained amplitude has to be squared and suitably integrated over all

Figure 3.2. The two Feynman diagrams that give the quantum mechanical amplitude for e+e →− 3 jets at the
lowest order in QCD perturbation theory. The two lines with an arrow on the left-hand side of each diagram
represent the incoming electron and positron, while the internal wavy line represents the sum of the
contributions of all vector bosons (here a photon and a Z) that can mediate the interaction [1, 2].
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possible values of the momenta in the final state, according to a Lorentz-invariant
measure, which is known as multi-particle phase space. Denoting by ¯p p,q q and pg
the momenta of the quark, anti-quark and gluon, respectively, it is customary to
introduce the kinematic variables

= = = + + ≡¯
¯

¯
( ) ( )

x
p q

Q
x

p q

Q
q p p p Q q

2
,

2
, , , (3.8)q

q

2 q
q

2 q q g
2 2

with =Q s the centre-of-mass energy of the e+e− collision. One can then compute
the differential cross section in xq and ¯x ,q normalised to the total cross section σ for
the process e+e− → hadrons [1, 2]:

σ
σ α

π=
+

− −¯

¯

¯( )( )x x
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1 d
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What is the physical interpretation of the kinematic variables xq and ¯xq? From basic
kinematics considerations based on momentum conservation one obtains
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As expected, the differential cross section in equation (3.9) is singular when pg is
collinear to pq( →¯x 1q ) or to ¯pq( →x 1q ), or when pg becomes soft (both xq and ¯xq

tend to 1). To compute the fraction of events in which three jets are observed, the
so-called three-jet rate, one needs a variable that discriminates between two- and
three-jet events. For instance, we can cluster events into jets using the JADE
algorithm described in section 2.1.2, introduce a jet resolution ycut and say we have
three jets whenever >y y .3 cut In this case = − − + −¯ ¯y x x x xmin[1 , 1 , 1],3 q q q q
giving for the three-jet rate
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The region of integration can be visualised in the plot of figure 3.3. There one sees
that the regions in which the integrand is singular do not contribute to the three-jet
rate. We can then perform safely the integral in (3.11) and obtain
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2
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cut
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For instance, at the LEP1 energy =Q 91.2 GeV, usingα =Q( ) 0.118,s we can evaluate
that for =y 0.1,cut around 10% of events will be classified as three-jet events, and this
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number increases to about 20% for =y 0.05.cut This is very close to what is observed in
experimental data (see figure 3.4), thus confirming the picture that jet momenta are very
close to those of their parent partons. Note that this agreement is obtained by simply
performing the lowest orderQCDcalculation giving rise to a third partonic jet, which in
this case is just a single energetic gluon. Note also that the agreement breaks down for
ycut around 0.01, revealing the need for higher order corrections.

Jet cross sections in hadron collisions. The calculation of jet cross sections in hadron
collisions proceeds in a similar fashion, with small modifications due to the presence of
hadrons in the initial state. These can again be discussed using an example. Suppose we
wish to study Z production plus one additional jet. At the lowest order in QCD

Figure 3.3. Allowed phase space for gluon emission from a ¯qq pair in e+e− annihilation. The shaded region
corresponds to the three-jet selection cut of (3.11).

Figure 3.4. The JADE three-jet rate, as measured by the OPAL collaboration at LEP1 [3].
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perturbation theory this jet can be either a quark or a gluon. What about the initial
state? If two hadrons collide at high energy, jet production requires that they break
apart and two partons, one extracted from each hadron, give rise to an elementary
collision. Therefore, if our final state is Z plus one jet, we need to consider all possible
subprocesses in which two partons extracted from the initial-state hadrons collide and
produce a Z boson plus an extra parton. There are three partonic subprocesses that can
give rise to this final state, ¯ →qq Zg, →qg Zq and ¯ → ¯qg Zq, represented pictorially in
figure 3.5. The cross section for each subprocess is called the partonic cross section and
is normally identified by the incoming partons (i.e. the incoming ‘channel’). Then, the
cross section for two hadrons hA and hB to produce a Z boson plus an extra parton is
the sum of the cross sections for each incoming channel, each one weighted by the
probability of finding one incoming parton in hadron hA and the other in hadron hB.
More precisely, given a hadron hA with momentum PA it is possible to define a parton
density function (PDF) μf x( , ),a A a/ F giving the probability density for finding a parton
of type = ¯a q, q, g) with momentum =p x Pa a A inside hadron hA [1, 2]. The scale μ ,F
called the factorisation scale, is an arbitrary energy scale on which each PDF depends
and represents the fact that our observable is insensitive to all partons with a transverse
momentum (with respect to the beam) below μ .F If we denote symbolically by

σ → p pd [ , ]ab c a bZ the cross section for the partonic subprocess →ab cZ , fully differential
in the momenta of the final-state particles, the hadronic cross section for Z plus one
jet, at the lowest order in QCD perturbation theory, is given by
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Figure 3.5. Representative Feynman diagrams for the three partonic subprocesses contributing to Z
production plus one jet.
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In the above expression, the sum over q extends to all the quarks that can be found
in the proton at a scale below μ .F For instance, if μF is of the order of some tenths of
giga-electron-volts, =q u, d, c, s, b. In hadronic collisions, jet cross sections are
usually presented as differential in the transverse momentum of the jet with respect
to the beam axis pt,jet and of the rapidity of the jet y .jet If we wish to compute the
hadronic Z plus one jet cross section, differential in pt,jet and y ,jet we need to compute

σ → p p p yd [ , ]/(d d )ab c a bZ t,jet jet for each partonic subprocess contributing to our observ-
able and weigh each cross section with the appropriate parton densities. In figure 3.6
we show the result of this procedure. There, the computed pt,jet distribution,
obtained by the author using the the program MCFM [5], is compared to LHC
data by the ATLAS collaboration [4]. The central theoretical prediction is obtained
by choosing μ μ= = +p M ,R F t,jet

2
Z
2 with μR the so-called ‘renormalisation scale’,

i.e. the scale at which the strong coupling is to be evaluated. The band represents an
estimate of the theoretical uncertainty, obtained by varying μ μ=R F by a factor of two
around the chosen central value, as such variation produces predictions that differ by
a quantity of order α2s from the central one. The PDFs have been chosen from the
CT10 set [6]. We note first that the lowest order QCD prediction is close in shape to
data, but underestimates them over the whole range of values of pt,jet.The discrepancy
points to the fact that we do need missing higher orders to accurately describe the
leading jet transverse momentum distribution. The arbitrariness in the choice of μR
and μF is a ubiquitous characteristic of QCD calculations in hadron collisions and
calls again for the computing of higher orders. The main reason for this is that the
centre-of-mass of each partonic collision is not known, so there is no unambiguous
way to assign a hard scale to a cross section. One normally chooses a scale that is of
the order of the transverse momentum of the jets involved, or of the masses of the

Figure 3.6. The distribution in the transverse momentum of the leading jet in Z plus one events, as measured
by the ATLAS collaboration [4], compared to an LO QCD prediction.
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heavy particles produced. The scale we have chosen gives predictions that are close to
experimental data, suggesting that higher order corrections are not too big for this
choice of scales. Despite their difficulties in describing data, lowest order calculations
contain a lot of information on the physics of jet events. For instance, they give
approximately the right shape for jet transverse momentum distributions, as well as jet
angular correlations. Such observables, as in the case we have analysed, are in general
not distorted in a significant way by higher order corrections, unless one looks into
very specific configurations of final-state particles. This is why it is extremely
important to be able to perform LO calculations in a general, fast and reliable way.

Tree-level techniques. LO calculations such as the ones outlined above are called
‘tree-level’, as opposed to loop calculations, whose representation in terms of
Feynman diagrams involves particles forming loops. The latter incorporate quan-
tum corrections to tree-level amplitudes. Comparisons of tree-level calculations with
experimental data have lead to an enormous amount of information on the nature of
quarks and gluons. For instance, from angular correlations between pairs of jets in
four-jet events in e+e− annihilation it was possible to confirm the existence of gluon
self-interactions. The remarkable success of tree-level calculations pushed QCD
practitioners to improve the technical tools for computing tree-level amplitudes with
an increasing number of final-state particles (or ‘legs’). On one hand, one needs an
automated method to generate and evaluate Feynman diagrams. This can be
achieved, for instance, with software packages such as QGRAF [7], FEYNARTS
[8], or CALCHEP [9]. On the other hand, one needs techniques to integrate the
resulting amplitude squared over the phase space of all particles in the final state. As
carried out for the amplitude squared for the emission of a gluon from a ¯qq pair, one
usually parameterises this phase space in terms of a set of variables that assume
values between zero and one, i.e. live inside a multi-dimensional hyper-cube. Actual
experimental cuts on final-state particles restrict the range of integration to a multi-
dimensional hyper-surface, whose boundary is generally so complicated that the
integration cannot be performed using analytical methods, but only with Monte
Carlo techniques. These procedures work as follows. One generates a sequence of
random numbers …x x( , , )m1 between zero and one. Then, one checks if this point is
inside the hyper-surface allowed by experimental cuts. If yes, the product of the
amplitude squared and of the phase-space Jakobian is the event weight, which is
added to the histograms corresponding to the cross sections one wishes to compute.
At the end of the Monte Carlo procedure, the average over the number of generated
events of the total weight in each histogram represents an estimator for the physical
cross section. Note that each point in the hypercube corresponds to a set of final-state
momenta. Therefore, a Monte Carlo integrator for tree-level matrix elements is in
fact an event generator, because the sequence of generated random numbers

…x x( , , )m1 can be translated into a sequence of final-state momenta …p p( , , ).n1
At this point, one can check directly if the produced final-state momenta pass the
required experimental cuts ( >y y3 cut in our example in e+e− annihilation). If so, the
event is accepted and its weight is stored in the appropriate histogram. In particular
for processes with many legs in the final state, it is essential to speed up this
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procedure as much as possible. On one hand, this is achieved by improving the
efficiency of event generation. This is done by using adaptive techniques such as
importance sampling (see e.g. [10]) or VEGAS [11], which aim to generate the most
events where the integrand has the largest value, so as to make the Monte Carlo
procedure converge faster to the actual value of the integral we wish to compute.
These techniques are implemented in all tree-level event generators currently in use,
such as the aforementioned CALCHEP and MADGRAPH [12, 13]. The latter is a
fully automated framework that generates tree-level amplitudes for all processes in
the Standard Model, as well as some models of yet undiscovered new physics.
MADGRAPH is also able to square amplitudes and feed them into a Monte Carlo
event generator which provides histograms as requested by the user.

Another important aspect that requires consideration is the fact that the number
of Feynman diagrams needed to compute an amplitude with a given number of legs
grows factorially with the number of legs. This immediately creates a computational
problem if we wish to describe jet events at the LHC, where one expects to see events
with a large number of jets. To give an idea, an amplitude for producing eight gluons
in the final state results from the sum of more than one million Feynman diagrams!
A viable alternative to Feynman diagrams is helicity techniques [14, 15]. Gluons and
quarks have two possible states of helicity, the component of the spin along the
particle three-momentum. One decomposes the amplitude into all possible helicity
states. As a first outcome, one obtains that many of these amplitudes are related,
which reduces the number of contributions to be computed. Second, some helicity
amplitudes can vanish, which information cannot be easily obtained by just looking
at Feynman diagrams. For instance, it can be shown that, if one considers gluons
only, amplitudes in which all gluons have the same helicity vanish. This also happens
when a single gluon has the opposite helicity with respect to the others. The first non-
vanishing gluon amplitudes are the so-called maximally helicity-violating ampli-
tudes, in which two gluons have opposite helicity with respect to all the others. Such
amplitudes actually reduce to only one term [16] andmore andmore compact formulae
arebeing found forall otherhelicity amplitudes (see e.g. [17–19]).Furthermore, onecan
exploit the factorisation properties of amplitudes to devise recursion relations that link
amplitudes with a different number of particles [20–24]. Discussing these techniques is
beyond the scope of this book. They constitute a very important topic in theoretical
physics, on which the interested reader can find a review in [25].

3.2.2 Next-to-leading order (NLO) calculations

Jet-rates in e+e− annihilation.Let us consider again jet production in e+e− annihilation.
This time we wish to study the two-jet rate, the fraction of events that will be classified
as two jets.We use again the JADEalgorithm to cluster final-state particles in two jets.
At order αs we have either zero or one extra gluon in the final state. As a consequence,
according to the value of y ,cut wehave twoor three jets. In this situation, the two-jet rate
R y( )2 cut is just oneminus the three-jet rateR y( )3 cut in (3.11).Although trivial in this case,
we wish to investigate how this result arises in fixed-order perturbation theory. Let us
define σ y( ),cut the cross section for events with <y y ,3 cut and σtot the total cross section
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for e+e− into hadrons1. Each of these cross sections has an expansion in powers of α ,s
evaluated at a renormalisation scale μ, as follows

σ σ σ σ= + + + ⋯, (3.14)(0) (1) (2)

where σ n( ) is of relative order αs with respect to σ − .n( 1) In this case, omitting for
simplicity interactions mediated by a Z boson, we get
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π σ= =N
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where the sum extends to all quasi-massless quarks (each carrying electric chargeQqe)
that can be produced for a given value of s. For instance, at LEP1 energies,

=s 91.2 GeV, hence =q u, d, c, s, b. The two-jet rate can be expressed in terms
of σ y( )cut and σtot as follows
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Strict fixed order for R2 requires expanding the denominator, giving
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At the lowest order, all events have two jets, irrespective of the value of y ,cut hence
σ σ=y( ) .(0)

cut tot
(0) Therefore, at LO =R y( ) 12 cut as expected. To compute R y( )2 cut at the

next perturbative order, the so-called next-to-LO (NLO), we need to know σ y( )(1)
cut

and σ .tot
(1) In fact, we only have to compute the difference between the two cross

sections, which is simply given by −σ R y( ),tot
(0)

3 cut with R y( )3 cut in (3.12). However, for
the sake of illustration, we discuss the calculation of σ y( ).(1)

cut The contribution of
this cross section from the emission of a gluon from the original quark–antiquark
pair is given by

⎡⎣ ⎤⎦

∫ ∫σ σ α
π=

+
− −

Θ + −

× Θ − − − + −

¯
¯

¯
¯

¯ ¯( )

( )( )( )
y C x x

x x

x x
x x

y x x x x

( )
2

d d
1 1

1

min 1 , 1 , 1 .

(3.18)
R F

s
q q

q q

q q
q q

q q q q

(1)
cut tot

(0)

0

1

0

1 2 2

cut

The integral above diverges when xq and/or ¯xq equal one. This divergence occurs
when the gluon becomes collinear to the quark ( →¯x 1q ), to the antiquark ( →x 1q )
and/or when the gluon is soft ( →¯x x, 1q q ). As explained in the previous chapter, soft
and collinear divergences cancel against quantum corrections arising when a gluon is
emitted and then reabsorbed by the quark–antiquark pair. Such gluons are called

1We compute both cross sections using partons as the final states, keeping in mind that they always turn into
hadrons. Corrections induced by hadronisation will be discussed in section 3.4.
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‘virtual’ because they do not appear in the final state, as opposed to ‘real’ particles,
representing observable objects. We now discuss the explicit cancellation of soft and
collinear divergences of the real cross section σ y( )R

(1)
cut against the contribution of the

one-loop diagram in figure 3.7. Soft and collinear divergences are conveniently
regularised by computing both real and virtual corrections in a number of space–
time dimensions D that slightly differs from four, namely ϵ−4 2 . Virtual corrections
are given as analytic functions of ϵ, with poles for ϵ → 0. In particular, each soft or
collinear divergence gives a ϵ1/ pole. In our case, these virtual corrections are given
by σ ϵ σ=y V( ) ( )V
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Correspondingly, computing the correction due to real emission in (3.18) in ϵ−4 2
dimensions gives [1, 2]
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This expression has up to two poles in ϵ1/ , which can be extracted using the
following relation among distributions:
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Figure 3.7. Feynman diagram representing virtual corrections to the two-jet rate at order α .s

2 In addition to infra-red and collinear divergences, virtual corrections might have additional ϵ1/ poles due to
ultra-violet divergences, arising when the momenta of the particles in the loops become very large. However,
these divergences can be removed via a suitable redefinition of the parameters of the theory, for instance the
coupling and the masses. From now on we will thus assume that ultra-violet divergences have been removed
from virtual corrections. This procedure, called ‘renormalisation’, ultimately results in the fact that the QCD
coupling has to be defined in terms of some renormalisation scheme, and depends on an arbitrary
renormalisation scale μR.
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where the ‘plus’ prescription for distributions is defined through the relation
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with F y( )cut finite for ϵ → 03. We see that the poles in the real correction cancel
exactly against those in the virtual correction. We can then take the limit ε → 0, and
obtain
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Let us consider for a moment the expression for F y( ).cut
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Expanding all plus distributions we obtain
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( )
d

1

d

1

min 1 , 1 , 1 1

1 1 2
5
2 3

( ). (3.26)

q

q

q

q

q q q q q q q q

q q

cut 0

1

0

1

2 2
cut

2 2
2

3 cut

After dividing by σtot and expanding the denominator in powers of αs the expected
result is

= −R y R y( ) 1 ( ).2 cut 3 cut

Most importantly, the expression in (3.26) has a clean physical interpretation. The
second line in the equation represents the contribution of true events, each with a
given value of xq and ¯x ,q corresponding to some kinematic configuration of the ¯qqg
system, whose three-jet resolution is given by − − + −¯ ¯x x x xmin[1 , 1 , 1].q q q q The
last line represents instead the contribution of counter-events, in which the emitted
gluon is either collinear to the quark ( →¯x 1q ), or to the antiquark ( →x 1q ), or soft

3Note that, both in σ(1)V and σ(1)R, the cross section σ(0)tot is understood to be calculated in 4 − 2ε dimensions.
However, since singularities cancel exactly between real and virtual corrections, so do the ε-dependent pieces of
σ(0)tot. This is why we have decided not to change notation with respect to the LO case.
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(both →¯x x, 1q q ). In all these cases =y 0,3 so that the counter-events live exactly
where the real matrix element becomes singular, with a weight that is equal and
opposite. Therefore, in actual calculations, soft and collinear singularities do not
cancel against virtual corrections, but against counter-events! Only now can we
appreciate the importance of the IRC safety of a jet algorithm. If the algorithm were
IRC unsafe, singular real events would not contribute to the two-jet rate and hence
they would generate an infinite contribution that does not cancel with that of the
corresponding counter-events.

In hadron collisions we meet an additional complication. In fact, the ϵ1/ poles of
collinear origin do not cancel completely between real and virtual corrections. The
reason is that a collinear emission from one of the initial-state partons takes a sizeable
amount of energy from the emitting parton. Therefore, the total available centre-of-
mass energy of the elementary partonic collision will be different for real and virtual
corrections, causing a non-cancellation of collinear divergences. These divergences can,
however, be reabsorbed in a redefinition of PDFs. In practice, one introduces extra
universal counter-terms, one for each initial-state parton, proportional to ϵ1/ , which
cancel against the surviving collinear singularities. One then repeats the sameprocedure
as in e+e− annihilation and, for an IRC safe observable, finds a finite result after the
addition of real contributions, virtual corrections and the collinear counter-terms.

The procedure outlined above is general enough to be applied to any fixed-order
calculation. One maps the phase space for extra-gluon emissions onto a multi-
dimensional hyper-cube and for each independent variable performs an expansion in
plus distributions as in (3.21). Although general, this procedure has the disadvantage
that it has to be performed for each different process. It also requires analytical
control over matrix elements, which can be very complicated, especially for a large
number of legs. The most popular solution to this problem is to introduce universal
counter-terms, which have the same singularities as real matrix elements, but are
simpler to handle analytically. In this case, real matrix elements can be computed in
four dimensions and their singularities are cancelled by the universal counter-terms.
Singularities of virtual corrections cancel against the integral of the counter-terms
over their full phase space. The latter needs to be performed analytically in ϵ−4 2
dimensions. This last requirement restricts the possible choice of counter-terms. In
fact, only two procedures are widely used to perform NLO calculations, the first
introduced by Frixione, Kunszt and Signer [26], the other by Catani and Seymour
[27]. Thanks to subtraction procedures, it is possible to construct NLOMonte Carlo
event generators that are fully differential in the momenta of final-state particles.
These momenta can then be used to compute physical observables which are stored
in the form of histograms.

Interestingly enough, the jet physics we have seen so far provides us with yet
another method to eliminate divergences in real matrix elements. Let us consider the
expression of the two-jet cross section for small values of y :cut

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟σ σ α

π
π≃ − + + −y

C
y y

( )
2

2ln
1

3ln
1

3
1 . (3.27)F s(1)

cut tot
(0) 2

cut cut

2

Hadronic Jets

3-16



We now generate events and compute the value of y3. If it is less than ycut we consider
the gluon as unresolved, i.e. the event will have the kinematics of a tree-level
quark–antiquark event, and its weight will be given by (3.27). If >y y ,3 cut the gluon
is resolved and the kinematics will be that of a ¯qqg event. Suppose that we want to
compute an observable in which the weight of resolved emissions with ≳y y3 cut is
binned in the same histogram as unresolved emissions. This happens for instance in
the case of σ ,tot the total cross section for e+e− → hadrons. The weight of resolved
emissions will have up to two logarithms of y ,cut but these logarithms will cancel
exactly those coming from unresolved emissions, displayed in (3.27), with a leftover
that vanishes as ycut becomes small. Therefore, for small-enough values of y ,cut any
histogram in which resolved and unresolved emissions contribute as above will be
independent of ycut within the numerical precision. This procedure is called phase-
space slicing and can be performed with any IRC safe resolution variable that is
different from zero when gluon emission occurs. Due to the presence of the
vanishing leftover, phase-space slicing is used less than subtraction methods.
However, the method has been recently resurrected in the context of next-to-NLO
(NNLO) calculations, as explained in section 3.2.3. It is amazing how a basic
knowledge of jet physics has already led to a number of important applications!

At the moment, NLO constitutes the state-of-the-art for fixed-order calculations.
NLO calculations are usually available in the form of Monte Carlo event generators,
producing a finite number of partons in the final state. The most popular are
EVENT2 [27] for e+e− annihilation, NLOJET++ [28], containing a selected number
of processes in e+e− and hadron collisions, and MCFM [5], encoding many
calculations for relevant processes in hadron colliders, such as W, Z, H and
heavy-quark production. NLO calculations constitute essentially a solved problem,
the only issue being that of constructing efficient event generators that accommodate
a large number of processes and an arbitrary number of emitting legs. Practical
limitations are the increasing number of Feynman diagrams that one has to compute
and the numerical stability of phase-space integrations. Among the most recent
advances in this field, we cannot avoid mentioning the so-called ‘unitarity’
techniques, which solve the problem of computing one-loop amplitudes in a general
and fast way. Any one-loop amplitude in QCD can be decomposed into a basis of
‘master’ integrals, called boxes, triangles and bubbles because of their graphical
representation in terms of Feynman diagrams for spin-0 particles. Until very
recently, such decomposition had to be performed for each Feynman diagram using
the Passarino–Veltman technique [29], consisting basically in its expansion into all
possible Lorentz-covariant tensor structures. The main advance came from [30],
where the coefficients of the decomposition in ‘master’ integrals were related to
physical amplitudes, which could be computed numerically using tree-level techni-
ques, such as the helicity formalism discussed in the previous section. This led to a
huge simplification in the calculation of virtual diagrams and opened the way for
efficient computation of QCD amplitudes with a large number of legs (see [31] for a
review on the subject). These techniquesmade it possible , for instance, to compute for
the first time the W production rate plus three jets at NLO [32]. Currently, unitarity
techniques are implemented in a variety of computer programs that automatically
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generate virtual corrections. The most widely used are BLACKHAT [33], GoSAM
[34] and HELAC [35]. BLACKHAT encodes W production up to five jets [36], Z
production plus four jets [37] and four-jet production in hadron collisions [38]. In its
current implementation, BLACKHAT is in fact responsible for the generation of
virtual amplitudes, whereas subtracted real matrix elements with an extra parton are
computed with the tree-level generator SHERPA [33]. GoSam is a publicly available
package that automatically generates code for one-loop QCD amplitudes. It has been
used for a number of multi-leg NLO calculations, including Higgs production plus
three jets [39]. In the current version, GoSam can be interfaced with both SHERPA
and MADGRAPH. HELAC is a fully contained package for NLO calculations,
including the efficient generation of real matrix elements using spinor-helicity
amplitudes. One of its most important results is the NLO calculation of the cross
section for ¯ ¯ttbb production [40], which is an important background to Higgs
production, when the Higgs decays into a pair of W bosons. Note that ¯ ¯ttbb has also
been computed with Feynman-diagram techniques, using automated reduction of
one-loop amplitudes with the Passarino–Veltman method [41]. Unitarity techniques
are also embedded in the package aMC@NLO, a fully automated framework which,
combined with MADGRAPH, makes it possible to, in principle, compute NLO
corrections to an arbitrary process [13]. This package is also able to interface NLO
calculation with parton-shower event generators, as explained in section 3.3.

3.2.3 Fixed-order calculations beyond NLO

There are several reasons why one would wish to compute jet cross sections beyond
NLO, the most compelling one is clearly that of reducing the uncertainty of
theoretical predictions, which for NLO calculations is still around 10–20%.
Pushing this accuracy to the percent level requires even higher-order corrections.
Notably, such an accuracy is comparable, for instance, to that which will be
achieved by LHC experiments for many relevant cross sections at the end of the
LHC second run. Furthermore, for many processes, including Higgs production plus
jets, NLO corrections are as large as the LO contribution, suggesting a slow
convergence of the QCD perturbative series. Improving such convergence requires,
in many cases, applying additional cuts to the final-state jets, for instance vetoing jets
with transverse momentum above a given threshold. Precise predictions in the
presence of tight kinematic cuts nevertheless requires control of higher order
corrections. This explains the general interest in NNLO calculations.

The first problem that arises at NNLO is the calculation of two-loop amplitudes.
At the moment a basis of two-loop master integrals is not known. Therefore, one has
to compute two-loop amplitudes on a case-by-case basis. These are known for all
processes involving at most four external particles (see e.g. [42–45]).

The other problem is how to construct the counter-terms to eliminate soft
and collinear divergences in real-emission matrix elements. A general subtraction
scheme with universal counter-terms has been proposed [46] and all the counter-
terms are currently available [47]. Another general subtraction procedure, the
so-called antenna subtraction method [48], is available, but the counter-terms
have to be computed analytically for each process. The antenna method has been
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successfully applied to build a fully exclusive NNLO Monte Carlo event generator
for e+e− → 3 jets [49], as well as for hadronic dijet production and Higgs production
plus one jet in the incoming gluon–gluon channel [50].

Alternatively, a straightforward, though computationally involved, procedure is to
map the ϵ−4 2 -dimensional phase space for all real emissions into amulti-dimensional
hypercube and perform an expansion in powers of ϵ. The construction of counter-terms
proceeds as for NLO calculations if all singularities appear in a factorised form.
Otherwise, it is possible to systematically split integrals in such a way that in each
integral all singularities are factorised. This method is known as sector decomposition
and can be applied generally to any integral in any number of dimensions [51, 52]. This
is how the first exclusive NNLO Monte Carlo event generators for Higgs [53] and
vector boson [54] production in hadron collisions were constructed. An improvement
on this line of thought consisted in a general phase-space parametrisation that makes it
possible to perform the ϵ expansion only on the singular limits of real-emission
contributions [55]. This method has been used recently to obtain a NNLO generator
for ¯tt production [56] and Higgs production plus one jet [57].

A third alternative is to use a generalisation of the phase-space slicing technique
described at NLO. Suppose we have an IRC safe observableV, a function of all final-
state parton momenta that vanishes at tree-level and such that the cross section for

<V v is known at NNLO, up to corrections that vanish as v goes to zero. In this case,
one can split the real-emission phase space so that configurations having >V vmin are
resolved, hence giving rise to partons in the final state, whereas configurations with

<V vmin are unresolved, their weight being just the analytic cross section for <V v .min
A Monte Carlo event generator constructed in this way gives finite cross sections,
independent of vmin up to corrections that vanish for →v 0.min One of these
observables is the transverse momentum pt of a Higgs or of a vector boson in hadron
collisions.Knowledge of themost singular terms of the cross-section for <p pt t,min has
been used to devise NNLO event generators for Higgs [58] and vector boson [59]
production, and has been generalised to the production of any colourless particle in
hadron collisions, notably to Higgs plus vector boson [60, 61] and vector–boson pair
production [62, 63]. The method has been generalised to events with an arbitrary
number of jets using N-jettiness, defined in (2.19), as a cut-off variable [64, 65].

The construction of NNLO Monte Carlo event generators, fully differential in all
final-state momenta, is the frontier of QCD higher order calculations. Having many
of these calculations available is crucial for exploiting the full potential of the LHC,
especially to understand the nature of possible deviations of data from Standard
Model predictions.

3.3 Multi-parton branching
Let us consider again the cross section for <y y3 cut in (3.18). This cross section
contains logarithms of ycut that diverge when ycut becomes vanishingly small. This
limit corresponds to having two extremely narrow jets, because events with any extra
gluons will be classified as three-jet events and hence discarded. Such logarithms
arise from the fact that one restricts the phase space available to real emissions, so
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that the cancellation of soft and collinear real and virtual contributions is not
complete, but occurs only up to momentum scales of the order of y Q.cut Since both
the energy and the angle of the extra gluon are logarithmically divergent, we obtain
at most two logarithms of ycut for any power of α .s Such a divergence for ycut → 0 is a
signal of the breakdown of perturbation theory, in other words of the fact that
considering a single extra gluon is not enough to obtain a physically sensible
prediction for σ y( )cut when ycut is close to zero.

Notably, in the JADE algorithm, the three-jet resolution is closely related to the
invariant mass of each jet. Hence, ≪y 1cut corresponds to the situation in which we
require that the invariant mass of each jet be much less than its energy, which in two-
jet events is of the order of the e+e− centre-of-mass energy Q. This is a very common
situation in many experimental analyses. Suppose for instance that we are looking for
a heavy particle (e.g. the Higgs) that decays hadronically, such that its decay products
are clustered into the same jet. This happens when the transversemomentum of the jet
is much larger than its invariant mass, so that the decay products of the heavy particle
receive a huge boost in the jet direction. On top of the jets originating from the decay
of the heavy particle, there will be background jets, whose invariant mass is
dynamically produced through QCD radiation. It is therefore important to have
theoretical tools that are able to tell us not only how likely it is that jets are produced,
but also how their inner structure is determined by subsequent parton emissions. This
is normally investigated by considering a jet resolution parameter and making it
much smaller than the typical energy of the jets. Such analyses are then characterised
by two scales, one being the typical energy of jets and the other the small resolution
parameter. Another situation characterised by the presence of two energy scales is
cross sections with a jet-veto. There are situations in which one rejects events with jets
with a transverse momentum above a given threshold. This is carried out, for
instance, to suppress background from heavy coloured particles, such as top quarks,
which will tend to produce many jets. The two scales here are the transverse
momentum threshold and the total invariant mass produced.

The physics of two-scale processes can again be understood from the simple
example of the two-jet rate. When ≪y 1cut we expect to find events with a quark and
an antiquark without any accompanying gluons. But this is impossible, because a
quark and an antiquark abruptly ripped off the vacuum will experience a huge
instantaneous acceleration and, since they possess a colour charge, will radiate
gluons. Hence we expect the two-jet rate to be exactly zero for =y 0.cut This
behaviour cannot be obtained at any fixed order in perturbation theory, but only
after collecting logarithmically enhanced contributions to all orders in the pertur-
bative expansion. A naive resummation of the largest (leading) logarithms at all
orders gives, for the JADE two-jet rate,

≃ → →
α
π−R y y( ) e 0 0. (3.28)y2 cut

ln 1

cut

s 2
cut

The configurations that give rise to the exponential in the above equation contain an
arbitrary number of soft gluons, collinear either to the quark or to the antiquark.
Furthermore, the emissions collinear to each leg are strongly ordered in invariant mass,
i.e. if …k k, , n1 are collinear to the quark, we have ≫ ≫ ⋯ ≫k p k p( ) ( )1 q 2 q k p( ).n q
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Last but not least, the emission providing the largest invariant mass has to determine
the value of y3, i.e. ∼ ¯y Q k p k pmax(max {2( )}, max {2( )}),i i j j3

2
q q with k{ }i collinear to

the quark and k{ }j collinear to the antiquark. Unfortunately, for the JADE
algorithm, not all configurations that are strongly ordered in invariant mass have
this last property. Hence the resummation of the leading logarithms does not lead to
an exponential, and (3.28) is only approximate [66]. In practice, this is reflected in
the fact that the JADE algorithm can recombine soft gluons collinear to two
different hard legs, as explained in section 2.1.2, and illustrated in figure 2.7. This is
the main reason behind QCD practitioners devising ‘exponentiating’ jet algorithms,
such as the Durham and Cambridge algorithms. In both cases, resummation of the
leading logarithms leads to an exponential similar to that in (3.28).

Exponentials such as the one in (3.28) are called Sudakov form factors and
represent the probability of having no emissions above a given scale (represented for
instance by a jet resolution). To understand how such exponentials emerge, we will
abandon jet rates for a while and discuss a simpler, and theoretically more
transparent, example. In e+e− it is always possible to divide final-state hadrons in
two sets, called hemispheres, such that, at tree-level, the produced quark and
antiquark belong to different hemispheres. Let us call a jet the set of all particles
belonging to one hemisphere and constrain the invariant mass (squared) of one
hemisphere to be less than a given resolution ≪Q Q .0

2 2 Suppose that this jet
contains the hard quark originating from the e+e− collision and that the quark emits
a single collinear gluon. If z is the splitting fraction and θ the opening angle between
the final-state quark and the emitted gluon, in the small-angle limit the invariant
mass (squared) of the jet is θ∼ −q z z Q(1 )2 2 2 (see section 3.1). Therefore, the
probability Σ Q( )0

2 that the mass of this jet is below Q0
2 is just one minus the

probability that its mass is above Q :0
2

⎡⎣ ⎤⎦∫
∫ ∫

θ
θ

α
π θ

α
π

Σ ≃ − Θ − −
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1
d
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d
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2

, (3.29)
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2 qq
s 2 2

0
2

2

2 qq
s

0
2

2

where we have changed a variable from θ2 to θ= −q z z Q(1 )2 2 2 and used the fact
that the invariant mass of a jet cannot exceed Q2.

If in a hemisphere we have only collinear splittings with successively decreasing
values of q2, we have that Σ Q( )0

2 is, in a first crude approximation, the probability of
having no emissions with >q Q .2

0
2 Let us split then the interval Q Q[ , ]0

2 2 into n
subintervals −Q Q[ , ],i i1

2 2 with =Q Q .n
2 2 If these intervals are infinitesimally small,

only one emission can have q2 in any given interval and, therefore, the probability of
not emitting anything in that interval is just

∫ ∫ α
π= −−

−
( )P Q Q

q
q

z P zd , 1
d

d ( )
2

. (3.30)i i
Q

Q
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2

2
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The total probability of having no emission with < <Q q Q0
2 2 2 is the product of the

elementary probabilities in (3.30):

⎡
⎣⎢

⎤
⎦⎥∫ ∫∏ α

πΔ = = −
→∞ =

−( ) ( )Q Q P Q Q
q

q
zP z, lim d , exp

d
d ( )

2
. (3.31)
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2

2 qq
s

0
2

2

Working out the correct kinematic boundaries for z, this reduces to a double
logarithmic exponent such as the one in (3.28).4

Not all configurations in which the mass of a jet is less than Q0
2 are made up of

strongly ordered emissions, so Σ Q( )0
2 is only approximately equal to Δ Q Q( , ).q

2
0
2

Corrections can be computed by introducing the jet invariant mass distribution
J Q k( , ),a

2 2 the probability that a jet initiated by a parton of type =a q g, has an
invariant mass k2, provided k2 is less than Q2. If we consider the mass of a jet as
generated dynamically through subsequent collinear splittings, we observe that there
are only two ways to produce a jet with invariant mass k2. In fact, either no
emissions occur and the invariant mass of the jet is zero, or there is at least one
splitting with opening angle θ and splitting fraction z, giving rise to two jets, each
with an invariant mass below θ= −q z z E(1 ) ,2 2 2 with =E Q/2 the energy of the
quark and antiquark produced in the hard e+e− collision. If a jet is initiated by a
quark the various possibilities are illustrated in the figure 3.8. In formulae

∫ ∫
∫ ∫
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∞ ∞
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and an analogous equation holds for J .g In the above equation we have left
unspecified the boundaries of the z integration, since they are irrelevant for the
current discussion. We have also assumed that there exists some well-defined
procedure (e.g. dimensional regularisation) to regularise the otherwise vanishing
Sudakov form factor Δ Q( , 0).q

2 Also, from now on we will implicitly assume that all
Sudakov form factors we will introduce are regularised.

4 The correct limiting value for z is obtained by imposing an upper bound on the splitting angle
θ θ= − < ∼q z z Q/[ (1 ) ] 12 2

max [66]. Since a double logarithm is obtained only in the soft limit →z 1, the
bound on θ translates into ≲ −z q Q1 / .2 2

Figure 3.8. Pictorial representation of the evolution equation (3.32).
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Integrating this equation with respect to k2 from 0 to Q0
2 we obtain

⎧⎨⎩
⎫⎬⎭

∫ ∫
∫ ∫
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The expression in brackets has a finite expansion in powers of αs and, as will be clear
later, contains fewer logarithms per power of αs than the Sudakov form factor
Δ Q Q( , ),q

2
0
2 which therefore represents the dominant contribution to Σ Q( ).0

2

Given the fact that distributions such as the one in the invariant mass of a jet are
ubiquitous in all studies aiming to understand the inner structure of jets, QCD
practitioners have tried to describe such observables with the highest possible
accuracy. This requires accounting for logarithmically enhanced contributions to
all orders in QCD perturbation theory. There are two ways in which this theoretical
programme is actually carried out, one is parton-shower event generators, the other
is analytical resummations. In the following we will try to explain the philosophy
underlying the two methods, highlighting advantages and limitations.

Parton-shower event generators. The equations for J ,q and for J ,g can be solved
iteratively. Each iteration consists in a further collinear splitting and corresponds to
what is done in parton-shower event generators. These computer programs simulate
successive collinear splittings, ordered in some variable q2 proportional to the
splitting opening angle θ2 (q2 can be the invariant mass of the parent parton, but it
does not need to be so). The ith splitting in the cascade, of type →a bc is generated
with probability

α
π∼ Δ ′ Θ ′ −→dP

dq
q

q q z P z q q( , ) d ( )
2 ( ), (3.34)a bc a ba

s
2

2
2 2 2 2

with Δ( )Q Q,2
0
2 the generalized Sudakov form factor
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where nf is the number of quasi-massless quark-antiquark pairs a gluon is kinemati-
cally allowed to split into.

The different ordering variable is reflected in the boundaries of the z integration,
which have been left intentionally unspecified in (3.34). Once q2 and z have been
generated, one can reconstruct the full kinematics of the splitting, i.e. the momenta
pa, pb and pc. During this procedure the ordering variable decreases until it reaches a
minimum value, where the procedure stops, leaving a set of final-state partons.
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These partons are then transformed into final-state hadrons by means of a
hadronisation model and these hadrons are used as inputs for the physical
observable under consideration. For instance, if we wish to compute the sum of
the invariant masses of the two hemispheres in e+e− annihilation, we first produce a
quark and an anti-quark, let them split subsequently and produce a set of final-state
partons and then hadrons. Then, the hadron momenta are separated in two
hemispheres and the sum of the invariant masses of the two hemisphere is calculated.
A parton shower program also returns the weight of each event, which can then be
suitably used to produce histograms. Parton-shower event generators are among the
most widely used tools in high-energy physics. Their strengths are twofold:

• they describe correctly an arbitrary number of collinear splittings and
• they produce realistic simulated events, whose final states correspond to
actually observed particles.

The last point is particularly important for experimental analyses. The final-state
momenta produced by parton-shower event generators can be sent directly to a
detector simulator, which returns the signals that would be observed in an actual
detector, given the input momenta. It is these reconstructed momenta that constitute
the input for physics analyses in high-energy experiments. Therefore, the ideal parton-
shower event generator should be able to simulate events with the same probability as
they would occur in reality. Of course, this is not possible, not only from a theoretical,
but also from a practical point of view. However, current event generators do give a
satisfactory description of experimental data. This success relies on several improve-
ments with respect to the naive formulation we have presented above.

Many improvements concern themodification of the splitting probability of (3.34),
so as to account for the largest number of logarithmically enhanced contributions.
These arise not only when emissions are collinear, but also when they are soft. Soft
gluon emission does not admit a simple probabilistic interpretation, in that it depends
crucially on the colour structure of all the energetic emitters. One crucial simplifica-
tion is the fact that a soft gluon emitted from a set of collinear partons sees only the
total colour charge of the collinear ensemble rather than the individual colour charges
(see e.g. [68], and references therein). This ‘coherence’ property can be accounted for
if the generation of collinear splittings is ordered in the splitting angle rather than in
the invariant mass of the products of the splitting, as happens for the configuration
shown in figure 3.9. This observation is the basis of the so-called ‘coherent branching’
algorithm, implemented in the event generator HERWIG [67, 69, 70]. Another
widely used event generator is PYTHIA [71]. Its original version uses the invariant
mass as an ordering variable for collinear splittings and corrects the phase space of

Figure 3.9. Three subsequent collinear splittings, with successively decreasing splitting angle θ θ θ> > .1 2 3
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emitted partons to account for coherence. Another parton-shower algorithm has been
devised which uses the relative transverse momentum of each splitting as an ordering
variable [72]. This is the algorithm implemented in the most recent versions of
PYTHIA [73]. Other branching algorithms, such as those implemented in HERWIG
++ [74] and SHERPA [75], are similar in philosophy but differ in the coverage of the
phase space of the emitted partons.

All the generators we have presented so far start from the splitting probabilities
described in section 3.1 and improve them to take into account, as much as possible,
all regions of the multi-parton phase space. Another set of algorithms starts from the
probability for the emission of soft gluons which, in the limit of a large number of
colours (large-Nc), can be written in a closed form [68] and gives rise to a branching
equation, which admits an iterative solution. The branching algorithm involves
‘dipoles’ as basic objects. In fact, a soft gluon is emitted by pairs of partons, each
pair being a dipole. When the gluon is emitted, a new dipole is formed, which can in
turn emit one more gluon, and so on. Since gluons are emitted with the correct
probability, coherence is automatically taken into account by such branching
algorithms, called ‘dipole’ showers. Dipole showers differ in the way in which
they accommodate collinear splittings. The first program implementing these ideas
was ARIADNE [76], a widely used tool in e+e− annihilation. Dipole showers are
now the basis of the Monte Carlo event generator VINCIA [77]. A more ambitious
programme of improving parton-shower event generators involves starting from
QCD amplitudes, instead of from branching probabilities [78].

Another relevant direction of improvement is in the generation of the hard event.
The branching algorithms described so far need as a starting point a given set of hard
partons that initiate collinear branchings. In their basic version, all event generators
produce these partons at tree-level and all subsequent partons are produced through
the branching algorithm. But this does not properly account for events in which new
hard jets are produced. One way to deal with this problem is a merging procedure, in
which a jet-resolution parameter is introduced [79, 80]. When a new parton is
emitted, if its distance (suitably defined) with respect to the other partons is below
the resolution parameter, it will be considered as a soft-collinear parton, otherwise it
will be considered as a new hard jet and the event will be given the correct tree-level
probability for the production of a new hard parton. With this procedure one can
merge different jet multiplicities. This is necessary in all analyses in which the signal
we are interested in produces high-energy jets. For instance, supersymmetric
particles, in particular squarks and gluinos, are expected to produce many jets at
high transverse momentum through their decays into coloured particles. Therefore,
a correct estimate of multi-jet emission probability is essential for such searches.
There are cases in which the particle we are looking for is typically accompanied by
at most one extra jet. In this case it is important to precisely determine the rate of
production of the particle, i.e. compute it at least at NLO. There are procedures
through which it is possible to generate NLO events with a modified weight, so that
they can be used as the starting point of a parton-shower event generator.
Subsequent partons are produced in such a way that no double counting occurs
and that the inclusive sum of all the weights gives the correct cross section at NLO.
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Such procedures, called ‘NLO matching’, are implemented in the public programs
MC@NLO [81] and POWHEG [82]. An example of the performance of different
parton-shower event generators is given in figure 3.10, showing the transverse
momentum of the leading jet associated with a Z boson [4]. The data are compared
to the NLO program BLACKHAT + SHERPA [33], to the two parton-shower
event generators SHERPA [75] and ALPGEN [83], and to MC@NLO [11].
MC@NLO is set up in such a way that the total Z production cross section is
correct at NLO. This means that the first jet produced in the branching is correctly
produced at LO accuracy, whereas all other jets are produced by the parton shower,
which is accurate in the collinear limit only. In fact, the calculation of MC@NLO is
basically equivalent to the LO calculation illustrated in section 3.2.1, which explains
why it underestimates the data, especially at high transverse momentum. The correct
normalisation is accounted for, within theoretical uncertainties, by the NLO
calculation provided by BLACKHAT + SHERPA. Note that SHERPA and

Figure 3.10. The transverse momentum distribution of the leading jet in Z production, as measured by the
ATLAS collaboration [4].
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ALPGEN, implementing the tree-level merging procedures of [79] and [80],
respectively, give the correct normalisation despite the fact that they do not have
the full virtual corrections, but only the approximate value given by the Sudakov
form factor. The message we extract is that, for this process, the main role of virtual
corrections is that of cancelling divergences of real-emission contributions, and that
leftover finite terms are quite small and contained within theoretical uncertainties.
Parton-shower event generators are instead crucial for describing observables that
are sensitive to multiple soft and collinear emissions, as is the case for the
distribution in the transverse momentum pT

Z of a Z boson at low p .T
Z A comparison

of fixed-order calculations with experimental data (see figure 3.11, left panel) shows
that theory predictions break down at small values of the Z transverse momentum,
due to the presence of large logarithms M pln( / ).Z T

Z This is not the case for all parton-
shower event generators (see figure 3.11, right panel), although their normalisation
does not perfectly agree with data at small values of p .T

Z Observables such as the Z
transverse momentum distributions thus have significant scope in assessing the
performance of various approaches to parton showers.

In addition to improvements in branching algorithms and the matching of more
and more processes at NLO, more sophisticated parton-shower event generators aim
at merging different jet multiplicities in such a way that the rate of each multiplicity is
NLO accurate [85, 86]. For instance, through the MiNLO procedure, it became
possible to merge for the first time Higgs events with zero and one jet at NLO.
Furthermore, with a simple re-weighting of zero-jet events, events generated with
MiNLOaddup to the totalHiggs cross section atNNLO [87]! TheMiNLOprocedure
therefore represents the first example of a parton shower matched to NNLO.

Parton-shower event generators are leaving their traditional role of tools for
approximate simulation of collider events, to become more and more precise tools,
also being able to predict jet distributions with a reliable normalisation and to
account to some extent for their own theoretical uncertainties. This has been possible
also because parton-shower generators have incorporated many theoretical advances
in analytical calculations. For instance, to achieve NLO accuracy for two different jet
multiplicities in Higgs production it was necessary to improve the Sudakov form
factor in such a way that logarithmically enhanced contributions in the transverse

Figure 3.11. Ratio of ATLAS data [84] for the transverse momentum distribution of a Z boson to fixed-order
predictions (left) and results obtained from various parton-shower event generators (right).
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momentum of the Higgs were described at very high accuracy. Fortunately, these
logarithms were known already from analytical calculations. Therefore, there is an
interplay between the accuracy of parton-shower event generators and progress in
analytical calculations, which will be discussed in the following.

Analytical resummations. Let us consider again the case of the invariant mass of a
hemisphere in e+e− annihilation (or of a jet, if we consider an event in hadronic
collisions) as a relevant example of a jet observable. We have already seen that the
probability Σ Q( )0

2 that the jet mass is less than a given resolution Q0
2 is roughly a

Sudakov form factor Δ Q Q( , ).q
2

0
2 The Sudakov form factor is an exponent

Δ ∼ =α−( )Q Q L
Q
Q

, e , ln , (3.36)L
q

2
0
2

0

s
2

that contains at most one more power of the logarithm L than the powers of α .s In
fact, the Sudakov form factor aims at resumming all the so-called ‘leading
logarithmic’ (LL) terms, those of the form α +Ln n

s
1 in the logarithm of the mass

distribution. Since most events lie in the region α ∼L 1,s LL terms are not enough
to constrain jet-observable distributions and better logarithmic accuracy is needed.
In the region α ∼L 1,s it is customary to reorganise the perturbative series for Σ Q( )0

2

(as well as that for any other jet observable) as follows

Σ = α α α α+ + +⋯( )Q e . (3.37)Lg L g L g L
0
2 ( ) ( ) ( )1 s 2 s s 3 s

The function g1 resums all LL terms, of the form α +L ,n n
s

1 g2 resums next-to-LL
(NLL) terms, α L ,n n

s g3 resums next-to-NLL terms (NNLL), α −L ,n n
s

1 and so on. It is
instructive to rewrite the perturbative series in the form

α α α αΣ = + + ⋯ ∼ + + ⋯α( )Q G L G Le [ ( ) ( ) ] e [1 ]. (3.38)Lg L L
0
2 ( )

2 s s 3 s s1 s

For α ∼L 1s we have that all functions gi are of order one, so that the only
contribution that needs to exponentiate is that arising from g1. The other contribu-
tions build up a new perturbative series, which starts from the NLL contribution
which is of order 1, with higher logarithmic corrections suppressed by more and
more powers of the QCD coupling. When it comes to resummation an important
clarification is in order. While in fixed-order calculations moving from one order to
the next is just a matter of computing more and more Feynman diagrams (which of
course might be very complicated from a technical point of view), each logarithmic
order already involves the summation of an infinite number of diagrams. Moving
from one logarithmic order to the next requires understanding which sets of
diagrams, or, better yet, which physical effects, are relevant at that order and
computing the corresponding contributions at the necessary accuracy. Here lies a
crucial difference between analytic resummations and parton-shower event gener-
ators. The latter might contain all the relevant effects to achieve a given logarithmic
accuracy, for instance NLL, but their predictions will also contain many subleading
contributions, which are basically impossible to disentangle. In contrast, analytic
resummations aim to have control of a specific set of logarithmically enhanced
contributions, completely neglecting all subleading effects.
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As an example, we discuss how NLL can be achieved for the jet mass distribution
Σ Q( ),0

2 and other jet observables related to this quantity. A good starting point [88]
is the evolution equation (3.32) which, as we have seen, is able to account for leading
logarithms in the invariant mass distribution, but misses relevant NLL contributions
arising from soft emissions. As explained in [88, 89], accounting for NLL logarithms
in the mass distribution J Q k( , )q

2 2 requires only a small modification of (3.32). In
fact, one only needs to change the evolution variable from the invariant mass
produced in each splitting to the relative angle θ of each splitting, embedding the fact
that coherence of soft QCD radiation is automatically taken into account if collinear
splittings occur with decreasing angles. The resulting evolution equation reads

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫ ∫
∫ ∫

δ α
π

δ

= Δ̃ + ˜
˜ Δ̃ ˜ − ˜

× ˜ − ˜

× − − − − −

∞ ∞

( ) ( ) ( )

( ) ( )

( )J Q k Q k
q

q
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where θ˜ =q Q /42 2 2 is a dimensionful variant of the splitting angle θ and Δ̃q is the
Sudakov form factor corresponding to angular ordering. To ensure NLL accuracy,
the QCD coupling has to be evaluated in the physical CMW renormalisation scheme
(see footnote 2 for the explanation of what a renormalisation scheme is), related to
the widely used MS scheme by

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜

⎞
⎠⎟α α α

π
π= + = − −K K C T n1

2
,

67
18 6

10
9

. (3.40)s
s

s
CMW MS

MS

A

2

F f

The iterative solution of (3.39) leads to the coherent branching algorithm that is
implemented in the parton-shower generator HERWIG. Note that the Sudakov
form factor is different from (3.31) and reads

⎡
⎣⎢

⎤
⎦⎥∫ ∫ α

πΔ̃ = − ˜
˜

− ˜( )Q Q
q

q
zP z

z z q
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d
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For the sake of analytical calculations, the Sudakov form factor is expanded in
powers of αs and the evolution equation for J Q k( , )q

2 2 is rewritten as follows:

⎡
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This is a non-linear equation whose full solution is not needed to compute J Q k( , )q
2 2

at NLL accuracy. In fact, coherence forces the angle of a subsequent branching of
the gluon −q z/(1 )2

2 2 to be less than q̃ .2 Therefore, q2
2 gives a non-negligible

contribution to the delta function in (3.42) only for ≃ − ˜q z q(1 ) ,2
2 2 2 which gives a

correction of relative order αs and hence NNLL. Neglecting this correction, one can
integrate − ˜J z q q((1 ) , )g

2 2
2
2 freely over q .2

2 This integration gives 1, because it
corresponds to a total probability, so that in the end we obtain a linear equation.
Furthermore, since P z( )qq is singular at z = 1, one can set →z 1 in all smooth
functions of z, up to NNLL corrections. One then obtains the linear equation

⎡⎣ ⎤⎦

∫ ∫δ α
π= + ˜

˜
− ˜

× ˜ − − ˜ − ˜
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which can be solved analytically via an integral transform. Note that a parton-
shower event generator will not perform these approximations, but will just provide
a solution of the full non-linear equation, thus capturing not only all NLL
contributions, but also a number of subleading corrections, in general not under
control. Whether (3.43) accounts for all NLL contributions to jet mass distribu-
tions in e+e− annihilation depends on the specific observable we consider. A way to
probe the invariant mass of jets is through the two variables thrust and heavy-jet
mass. In two-jet events, one minus the thrust is approximately the sum of the
(squared) invariant masses of the two hemispheres (normalised to Q2), whereas the
heavy-jet mass is the (squared) invariant mass of the heavier hemisphere (again
normalised to Q2). Both are examples of event-shape variables, because their value
gives an idea of the shape of the energy–momentum flow of hadronic events. Let us
consider the cumulative distributions τΣ( ), the fraction of events for which one
minus the thrust is less than τ. When τ is close to zero, events contain two pencil-like
jets, whereas for large τ events are more symmetric, quasi-spherical. In the two-jet
limit, i.e. if τ is close to zero, τΣ( ) is related to J Q k( , )q

2 2 as follows

∫ ∫τ τΣ = Θ − −
τ τ

( ) ( ) ( )q J Q q q J Q q Q q q( ) d , d , , (3.44)
0 0

Q Q
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2
2 2
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2

2
2

2 2

with q1
2 and q2

2 the (squared) invariant masses of the two hemispheres. Similarly, for
ρΣ( ),H the fraction of events for which the heavy-jet mass is less than ρ ,H we have

∫ ∫ρ ρΣ = Θ −
ρ ρ

( ){ }( ) ( )( ) q J Q q q J Q q Q q qd , d , max , .
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If we consider instead the cumulative distribution in the invariant mass of a single
hemisphere, unfortunately (3.43) is not enough to achieve full NLL accuracy. This
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is because, in the coherent branching formalism, J Q k( , )q
2 2 accounts for the

branchings that occur inside the hemisphere containing the quark. There are,
however, configurations in which soft emissions falling into the opposite hemisphere
coherently emit a softer gluon that contributes to the mass of the observed
hemisphere [90]. For observables such as the single-jet mass, such configurations
give an NLL contribution, whereas for the thrust or the heavy-jet mass they give
subleading effects. These NLL contributions are called non-global logarithms,
because they appear whenever the region in which measurements are performed is
restricted. In fact, gluons emitted in the unobserved region have energies that are
logarithmically distributed between the jet resolution Q0 and the hard scale of the
process Q, giving rise to single-logarithmic contributions to all orders. For the
single-jet mass distribution ρΣ( ), the probability that the (squared) invariant mass of
one jet is less than ρQ ,2 we obtain

∫ ∫ρ ρΣ = Θ − −
ρ ρ

q J Q q k S Q k Q q kQ( ) d ( , ) d ( , ) ( ), (3.46)
Q Q

0

2
q

2 2

0
qq

2 2
2

where ¯S Q k( , )qq embodies the contribution of non-global logarithms. An evolution
equation such as (3.43) has been written for the scalar sum of transverse momenta
within a jet, which led to the NLL resummation of the total and wide-jet
broadenings, two relevant event shapes in e+e− annihilation, giving an idea of
the width of jets [91, 92]. The distribution in the single-jet broadening is affected by
non-global logarithms, and hence cannot be expressed in terms of the distribution
in the scalar sum of transverse momenta within a jet.

Non-global logarithms deserve a special mention. First of all, they are single
logarithms, i.e. they have a power of αs for each power of the resummed logarithm.
They originate from soft emissions, which cannot be taken into account via a
simple probabilistic picture. However, such a picture does exist in the large-Nc
limit. In that limit, one can write an evolution equation whose solution provides
the resummation of non-global logarithms [93]. The equation was solved first via a
Monte Carlo iteration [90, 94] and later through other numerical techniques [95].
Currently, the evolution equation for non-global logarithms has been extended
beyond the large-Nc limit [96] and some terms beyond NLL accuracy have been
computed [97–100]. However, due to these complications, to ensure that analytic
resummation can be performed with the highest possible accuracy, one preferably
considers global observables. This is what we will do in the rest of our discussion
on resummation.

The limitation of the coherent branching formalism is that it is tied to a
probabilistic picture of QCD collinear splitting, which might not be adequate to
capture corrections beyond NLL accuracy. A more general analytic approach is
based on soft-collinear effective theory (SCET) [101]. In SCET one considers all
Feynman diagrams that contribute to a given observable and divides them
according to how the loop momenta scale with respect to the physical scales of
the problem. For instance, in the case of the thrust distribution the relevant scales

Hadronic Jets

3-31



are Q2, τQ2 and τ Q2 2. It is then possible to show that, in SCET the thrust
distribution for τ ≪ 1 can be written as [102]

∫τ μ μ μ μ

τ

Σ ≃

× Θ − − −
( ) ( ) ( )

( )
H Q q q k J q J q S k

Q q q k Q

( ) , d d d , , ( , )

. (3.47)
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The hard function μH Q( , )2 contains the contribution of all loop momenta of the
order of the e+e− centre-of-mass energy Q. This implies that only virtual
corrections can contribute to H, because a real emission with a large momentum
would give a jet with a large invariant mass, which cannot contribute to τΣ( ) in the
two-jet limit. The jet functions μJ q( , )1

2 and μJ q( , )2
2 contain loop momenta which

are energetic, but have a small invariant mass, of order τ∼ ∼q q Q ,1
2

2
2 2 as is typical

for collinear, but energetic, emissions. The soft function μS k( , )s contains loop
momenta whose components are all small and of order τ∼k Q.s There are many
other possible scalings of loop momenta, but they all lead to dimensionless
integrals, which vanish when evaluated in dimensional regularisation. All these
functions, in particular the jet and soft functions contributing to the thrust, are all
defined in terms of operators in the effective theory, even beyond perturbation
theory, and have a well-defined expansion in powers of the QCD coupling.
Furthermore, each function depends on an unphysical scale μ on which the thrust
distribution τΣ( ) cannot depend. Taking the derivative with respect to μ gives an
equation relating H, J and S, which leads to the emergence of the Sudakov form
factor as the solution of a linear differential equation, rather than from proba-
bilistic arguments. Also, each of the three functions satisfies a linear differential
equation by itself and this is enough to fully constrain τΣ( ) at all logarithmic
orders. SCET has been successfully applied to many final-state observables in e+e−

and hadron–hadron collisions, reaching an accuracy that is difficult to obtain with
other approaches. This is also due to the fact that evolution equations for hard,
soft and jet functions can be studied separately and in some cases the results can be
already found in the literature from unrelated studies. For instance, the hard
function μH Q( , )2 is just the absolute value squared of the on-shell quark form
factor, a well-known object in quantum field theory which has been computed up
to three orders in αs [103, 104] and its functional form is known at all orders [105].
Also, the evolution equations for H, J and S all involve the so-called ‘cusp
anomalous dimension’, which is another important object in quantum field theory,
whose expansion in powers of the QCD coupling is known up to three orders [106].
Despite this success, SCET has some limitations. First, the relevant expansion
modes, and hence the needed effective theory, might differ from one observable to
the next and at the moment there exists no general criterion that associates an
effective theory to a given observable. Second, the observable constraint, e.g.

τΘ − − −Q q q k Q( )2
1
2

2
2

s should not correlate the relevant modes in a non-trivial
way, which would make an analytic treatment of the observable infeasible.

The main limitation posed by evolution equations is that physical observables
need to be written in some factorised form. In fact, this is not the case for most
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final-state observables, especially for jet rates, which result from algorithmic
procedures involving all final-state particles in a highly non-trivial way.
However, the physics content of the coherent branching equations needed to
achieve NLL resummation for the thrust and jet broadening distributions is that
relevant QCD emissions at that accuracy are just soft and collinear gluons widely
separated in angle. These gluons are independently emitted from the hard quark
and antiquark produced in e+e− annihilation and subsequent collinear splittings of
the emitted gluons contribute beyond NLL accuracy. This corresponds to
integrating away − ˜J z q q((1 ) , )g

2 2
2
2 in (3.42). Consider now a generic final-state

observable ˜ …V p k k({ }, , , )n1 in e+e− annihilation, where p̃{ } represents the
primary quark and antiquark produced in the collision and …k k, , n1 being
secondary partons. Suppose also that V vanishes when no emissions are present,
i.e. ˜ =V p({ }) 0. If relevant emissions at NLL accuracy are the same as for the
thrust and jet broadening, it is possible to write a general NLL resummation
formula for Σ v( ), the fraction of events with ˜ … <V p k k v({ }, , , ) .n1

∫∑ ∏Σ = ! Θ − ˜ …∫
=

∞

=

− ( )v
n

k M k v V p k k( ) e
1

[d ] ( ({ }, , , )), (3.48)
n i

n

0 1

k M k
i i n

[d ] ( ) 2
1

2

where M k( )i2 is an effective emission probability for soft and/or collinear gluons
widely separated in angle and k[d ]i a suitable Lorentz invariant phase space for
gluon ki. The fact that for suitable observables Σ v( ) can be written in a closed form
makes it possible to compute it with a Monte Carlo integration procedure, even if
the observable cannot be handled analytically [107]. In fact, one just needs to know
the function ˜ …V p k k({ }, , , )n1 for an arbitrary set of final-state momenta. It is also
possible, given ˜ …V p k k({ }, , , ),n1 to establish if (3.48) is enough to obtain an NLL
resummation for Σ v( ). The set of requirements that ˜ …V p k k({ }, , , )n1 needs to
satisfy are known as ‘continuous globalness’ (a stronger condition than globalness)
and ‘recursive IRC (rIRC) safety’ [108]. These are more restrictive constraints with
respect to standard IRC safety and are related to the scaling behaviour of

˜ …V p k k({ }, , , )n1 in the presence of multiple soft and/or collinear emissions. It is
possible to show that the NLL resummation for any continuously global rIRC final-
state observable is given by a general master formula, obtained from (3.48), whose
ingredients can be extracted by evaluating ˜ …V p k k({ }, , , )n1 with suitable ensembles
of soft and/or collinear emissions. This evaluation can be efficiently performed by a
computer and is encoded in the numerical code Computer Automated Expert Semi-
Analytical Resummer (CAESAR) [109]. The CAESAR approach is very effective in
handling contributions arising from multiple soft-collinear emissions. These are
computed through a simplified parton-shower event generator, which produces an
arbitrary number of soft and collinear emissions and feeds them into a computer
subroutine that computes ˜ …V p k k({ }, , , ).n1 However, the cancellation of infrared
and collinear singularities between real and virtual corrections has to be performed
analytically. At NLL accuracy, this simply leads to the exponent ∫−e k M k[d ] ( )2 in
(3.48). The exponent contains virtual corrections, and unresolved real emissions,
which give no contribution to ˜ …V p k k({ }, , , )n1 (for instance, because they are too
soft) and is in fact the Sudakov form factor for the observable V. From NNLL
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accuracy onwards, a general expression for the all-order contribution of virtual
corrections and unresolved emissions is not known and one has to work out the
cancellation of IRC singularities for each observable. Once this is done, however, all
NNLL corrections induced by real radiation can be computed with Monte Carlo
event generators. This has been achieved for event shapes for which cancellation of
singularities between virtual and real corrections works in the same way as for the
thrust and jet broadening [109]. A clear advantage of having a resummation formula
in terms of actual emissions rather than as the solution of a differential equation is
that one has a clear picture of what approximations on the multi-parton emission
probabilities and phase space are needed to achieve a given logarithmic accuracy.
This is important to establish the logarithmic accuracy of parton-shower event
generators: one needs to check the approximations according to which partons are
produced by the corresponding branching algorithm. This is one of the benefits of
the cross-talk between analytic resummation and the development of parton shower
event generators.

3.4 At the boundary of perturbative QCD
The theoretical methods employed to describe the jet observables introduced in the
previous sections consider jets as being made up of quarks and gluons, the basic
degrees of freedom of QCD, rather than hadrons, as is the case in reality. The
appropriateness of a perturbative QCD analysis of jet properties depends crucially
on the observables we consider. If we ask how many hadrons of a given type (e.g.
pions or protons) we will observe on average in a jet of a given transverse momentum,
it is obvious that the answer will depend on the details of the hadronisation process.
However, if we look at the distribution in the transverse momentum of a jet
originating from an energetic quark, we expect that the reshuffling of final-state
momenta due to hadronisation will not dramatically change the total transverse
momentum of the jet. Let us make this argument more rigorous. Suppose we have a
generic cross section σ that depends on a typical scale Q, (e.g. the transverse
momentum of a jet) and on the masses of the quarks involved m .q Collinear
divergences are regulated by the quark masses and we also introduce a fake gluon
mass mg to regulate soft divergences. For ≫Q m m, ,2

q
2

g
2 the dependence of σ on the

relevant scales involved is given by

⎛
⎝⎜

⎞
⎠⎟σ α μ μ μ μ α μ= =( )Q m

Q
F

Q m
i( ), , ,

1
, , ( ) , q, g. (3.49)i

i
s

2 2 2
2

2

2

2

2 s

If soft and collinear divergences cancel completely between real and virtual
corrections, then this cross section can be computed in the limit in which all masses
are set to zero. Hence we can write [110]
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where p is a positive power. This means that when ≫Q m m, ,2
q
2

g
2 it is enough to

compute F̂ , since what we are losing are power-suppressed corrections. It is these
corrections that account for hadronisation effects, so we can say that, when the
typical hard scale of a process is much bigger than small quark and gluon masses,
hadronic cross sections can simply be computed using the quark–gluon language of
perturbative QCD. Also, when Q is extremely large, radiation from hard partons is
forced to be extremely collimated, hence we can safely assume that one jet is
obtained per hard parton produced.

For moderate energies, however, hadronisation corrections do play a role and
have to be quantified. This is normally achieved through hadronisation models
available in parton-shower event generators. These models are phenomenological
tools, encoding heuristic, though not simplistic, ideas of how hadronisation works.
They contain many parameters, which have to be determined by comparing
predictions for suitable observables, sensitive to hadronisation (such as hadron
multiplicities inside jets, event-shape mean values and distributions), to experimental
data. Then, hadronisation corrections to IRC safe observables (e.g. jet cross
sections) can be evaluated by simply taking the ratio of the predictions of a
parton-shower event generator at hadron level and at parton level (with hadronisa-
tion switched off). Such a procedure is not inappropriate, in that the fact that
hadronisation corrections are power-suppressed suggests that the phenomena
underlying the formation of hadrons are largely decoupled from the energetic
parton branching giving rise to the energy–momentum pattern of jets.

Local parton–hadron duality. It is possible to estimate the size of hadronisation
corrections with analytical methods. Totally inclusive quantities, such as the total
cross section e+e− → hadrons, can be expressed in terms of Fourier transforms of
the expectation values of products of operators in quantum field theory, for
instance

∫σ → ∼ ⋅+ − x J x J(e e hadrons) d e 0 ( ) (0) 0 , (3.51)qx4 i

where the four-vector J x( ) is a local operator representing the conserved quark
electromagnetic current and q is the total four-momentum of the incoming e+e− pair.
The quantity in (3.51) is a function of the invariant =Q q ,2 2 and can be expanded in
inverse powers of Q2. The leading term in Q1/ ,2 the so-called ‘leading-twist’ term,
gives precisely what we would obtain in massless QCD. Higher powers of Q1/ ,2

called ‘higher-twist’ terms, can be systematically accounted for in this expansion
and consist of products of coefficients, calculable using the quark–gluon language,
and expectation values of local operators, which have to be extracted from data
or computed with non-perturbative methods, e.g. discretising QCD on a lattice.
Note that this expansion, called operator product expansion (OPE), is rigorously
defined for <Q 02 and must necessarily be truncated at a given order. Its analytic
continuation into the physical region >Q 02 misses completely non-perturbative
effects such as the production of hadronic resonances, but captures very well the
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continuum background on top of them. This analytic continuation corresponds
physically to the assumption that at high energies hadronic physics is mostly
accounted for by the dynamics of quarks and gluons, with hadronisation giving
just a reshuffling of parton momenta into the observed hadrons. This hypothesis is
known as local parton–hadron duality (LPHD) and is assumed to hold also for non-
inclusive observables for which an OPE does not exist (see e.g. [111, 112]). LPHD is
the philosophy underlying parton-shower event generators, which produce quarks
and gluons until a cut-off value in the evolution variable is reached, after which a
hadronisation model transforms all produced partons into hadrons [67, 113].

Hadronisation corrections through an effective coupling. An interesting development
of LPHD is the idea of describing hadronisation through the notion of a QCD
effective coupling at low momentum scales [114]. There are observables such as
event-shape distributions in which leading hadronisation corrections are due to soft
hadrons, at large angles with respect to the leading jets. Despite the fact that, at each
order in perturbation theory, gluons emitted in this kinematic region give a very
small contribution, it turns out that the resulting perturbative series is factorially
divergent. To overcome this problem, introducing a merging scale μI has been
suggested, such that only emissions with energy above μI are treated perturbatively
and in fact they lead to a convergent perturbative expansion [115, 116]. Emissions
with energies below μI are treated as soft hadrons, having the same emission
probability as soft gluons, except for the coupling which is a non-perturbative
extension of the CMW coupling introduced in (3.39). For instance, consider a
generic event-shape ˜ …V p k k({ }, , , )n1 in e+e− annihilation, to which a non-
perturbative emission at large angles contributes by an amount

δ θ˜ ≃ −V p k z f({ }, ) (1 ) ( ), (3.52)V

with (1− z)Q/2 the energy of the non-perturbative gluon. In the CAESAR approach,
the contribution of this emission to the probability Σ v( ) that … <∼V p k k v({ }, , , )n1
is given by

⎡⎣ ⎤⎦
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where the difference in step functions represents the fact that soft emission k can be
either real or virtual. Note that all emissions except k have transverse momenta
much bigger than μI and can thus be considered as quarks and gluons. Since δV is
small with respect to v, one can expand the theta function and obtain
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∫ ∫
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The contribution above represents the leading hadronisation correction to Σ v( ),
including which we have

δ δΣ → Σ − 〈 〉
Σ

≃ Σ − 〈 〉v v V
v

v
v V( ) ( )

d ( )

d
( ). (3.55)NP NP

Since δ μ〈 〉 ∼V Q/ ,NP I hadronisation corrections to such final-state observables
amount in a power-suppressed shift in the corresponding distributions. This is
actually observed in data, as illustrated for instance in the left-hand panel of
figure 3.12. There one sees that the perturbative resummed distribution for one
minus the thrust τ (the green dashed curve) has a shape that is roughly consistent
with the data, but it needs to be shifted in order to be able to describe the ALEPH
data (see the red curve, containing leading hadronisation corrections). The fact that
non-perturbative corrections are expressed in terms of the same integral of the
universal coupling αs

NP makes it possible to extract this non-perturbative parameter,
known as α μ( )0 I from the data. This parameter is defined from the relation [115]

⎡⎣ ⎤⎦∫μ α
π

μ
π α μ α α≡ = − +

μ
( )A k

k
Q( ) d

( )
( ) ( ) . (3.56)

0
I

s
NP

I
0 I s s

2I

6

Figure 3.12. Left: theoretical predictions for the distribution in one minus the thrust τ without [89] (green,
dashed) and with (solid, red) hadronisation corrections [115], compared to ALEPH data [117]. The
corresponding theoretical predictions have been matched by the author to exact NLO provided by the program
EVENT2 [27]. Right: simultaneous fit of α M( )s Z and α (2 GeV)0 performed by the L3 collaboration [118].
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What is actually performed are simultaneous fits of α μ( )0 I and α M( ).s Z These fits, an
example of which is shown in the right-hand panel of figure 3.12, shows that α0 is
approximately universal, thus confirming the appropriateness of the effective
coupling approach to describe hadronisation corrections to jet observables. It has
to be noted that other approaches give the same result: leading power-suppressed
corrections to event shapes are of order Q1/ and can be expressed in terms of a single
universal parameter. Also, at the moment the form of hadronisation corrections to
jet rates is not known. Phenomenological studies with parton-shower event
generators show that they are much smaller than those of event shapes. This is
one of the reasons why defining observables in terms of jets is preferred to using
individual hadrons.

Underlying event. In hadron collisions there is an additional source of non-
perturbative corrections, the so-called underlying event (UE). When two hadrons
collide at high energies they break apart and a single parton is extracted out of each
of them. The remnants have themselves a colour charge and can therefore interact
strongly. A rare occurrence is a secondary hard scattering of two partons from the
remnants. This is called double-parton scattering, and gives rise to a secondary hard
event, for instance the production of two or more jets with high transverse momenta.
The most likely situation is that low-energy collisions occur, producing a cloud of
low transverse-momentum hadrons, with a distribution that is roughly uniform in
rapidity and azimuth. In practice, it is difficult to distinguish between the two
situations, because there might be more than one secondary collision and some
secondary collisions will produce such low transverse momentum jets that the
resulting event cannot be distinguished from a uniform hadron background. This is
why many parton-shower event generators, e.g. PYTHIA, model the UE as multi-
parton interactions (MPI), where proton remnants can undergo one or more
secondary collisions. The default version of HERWIG produces soft hadrons
uniformly in rapidity and azimuth [69, 70]. However, since this does not account
properly for hadron production in the presence of the UE, the package JIMMY,
which encodes a model for MPI, has been devised to be interfaced with HERWIG
[119]. The main quantity one is interested in when studying jet physics is ρ , the
average transverse momentum per unit rapidity and unit azimuth produced by the
UE. How this quantity can be extracted from data, and how its fluctuations from
one event to the other can be assessed, are still the subject of debate and beyond the
scope of this book [120, 121]. An analogous quantity ρPU represents the average
transverse momentum per unit rapidity and unit azimuth produced by pile-up (PU)
events, secondary hadronic collisions that occur at each beam crossing. UE and PU
are unavoidable in hadronic collisions and contaminate any jet observable. It is
therefore important to quantify how much they affect physical observables and find
strategies to assess, and hopefully subtract, their contribution. The method of jet
areas makes it possible to perform this task for quantities related to the total
transverse momentum of jets, as discussed in section 2.1.3. Further methods to
eliminate a uniform background will be discussed in the next chapter, dealing with
how jets can be exploited to discover new particles.
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Chapter 4

Jets as discovery tools

As we have seen in the previous chapter, QCD, the theory of strong interactions,
predicts the occurrence of jets in high-energy collisions. Using perturbative QCD it is
possible to predict observables involving jets with high accuracy. This is especially
true at very high scales, since non-perturbative corrections (e.g. hadronisation) are
suppressed by inverse powers of the characteristic energy of each process. Therefore,
the most natural use of jets is as a means of testing perturbative QCD, for instance
by measuring the QCD running coupling. One such measurement is the inclusive
transverse momentum distribution of a jet in hadron collisions, obtained by binning
the transverse momentum of every detected jet. The plot in the left-hand panel of
figure 4.1 shows such measurements performed by the ATLAS collaboration at the
LHC [1]. One sees very good agreement between the data and NLO QCD
predictions obtained with the program NLOJET++ [2], so that an extraction of
the QCD coupling αs as well as fits of parton distribution functions are possible.
Inclusive jet transverse momentum spectra are just an example of the many jet
observables that are currently used for αs measurements. A comprehensive plot
showing a summary of the most precise measurements of αs [3] is shown in the right-
hand panel of figure 4.1. There is a striking agreement of all the measurements with
the running of the coupling predicted by QCD, thus confirming its reliability as a
theory of strong interactions at high energies. Note also that not only do jet
observables provide most of the measurements in the plot (jets in electron–proton
collisions e+e− jets and shapes, ¯ →pp, pp jets), but also make it possible to
explore different energy scales, which is not possible with full inclusive observables
such as τ decays, which are characterised by a single hard scale. This is why it is
very important to refine theoretical methods as much as possible to compute jet
observables with higher and higher precision.

However, using jets as a means of testing perturbative QCD is just one of the
ways in which they can be exploited. Another important application of jet physics is
the search for new particles, especially in hadron colliders. To understand how this
can be achieved, let us start again with an example, taken from [4]. Suppose we are
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looking for a new heavy particle that decays into quarks. The latter will give rise to
jets in the final state. The relevant question is how to distinguish jets originating from
new-particle decays from those produced directly in a hard collision. The main
philosophy is to devise suitable observables whose distributions are different for
signal and background events, thus acting as discriminators. The choice of these
observables may be guided by a trial–error procedure, e.g. simulating signal and
backgrounds with parton-shower event generators and examining the outcome until
a satisfactory signal-to-background ratio is obtained. This approach is reasonable
and highlights how important it is that parton-shower event generators accurately
describe most of the features of jet production. However, one may complement this
information with theoretical considerations. For instance, consider the simple
scenario in which one looks for a heavy electrically neutral vector boson, let us
call it Z′, that decays into a quark–antiquark pair. The natural way to look for such
an object at the LHC is to reconstruct a pair of jets at high transverse momentum,
say with the anti-kt algorithm with a given radius R, and look for a peak in the
invariant mass distribution of the two jets. The choice of the jet radius plays an
important role in such analyses. In fact, partons from Z′ decay can radiate outside
the jet radius, the dijet pair hence looses mass and instead of a peak we may observe
a broad distribution, indistinguishable from the continuum background. If, in
contrast, we increase the radius too much, we catch many secondary hadrons
from pile-up (PU) and from the underlying event (UE), again spoiling the resolution
of the mass peak. This effect can be appreciated in figure 4.2, where (simulated) jets
originating from the decay of a Z′ with a mass of 2 TeV are reconstructed with the
anti-kt algorithm and different jet radii. There one clearly sees a degradation of the
reconstruction quality of the mass peak when one moves away from =R 0.6, which
represents somehow an optimal radius for this analysis. The trial–error procedure
here consists in reconstructing the mass peaks for all possible algorithms and jet
values, and this would have to be repeated for each new analysis. Furthermore,

Figure 4.1. The inclusive transverse momentum spectra of jets, as measured by the ATLAS collaboration in
different rapidity bins (left) [1] and the running of the QCD coupling, as determined by various measurements
(right) [3].
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relying on the outcome of parton-shower event generators implicitly assumes
that these tools are able to capture the main features of the physics involved.
A theoretically more sound approach consists in assessing the impact of perturbative
and non-perturbative effects on jet-based analyses, and checking whether parton-
shower event generators reproduce the main features that the theory predicts. The
thus-validated event generators can be reliably used in a more refined trial–error
procedure. In this chapter we will discuss how QCD has helped in devising better
procedures to discriminate signal events, e.g. the hadronic decay of a heavy particle,
from background events arising fromQCD jet production. In particular, in section 4.1
we will discuss how the energy–momentum content of a jet of a given radius is affected
by QCD radiation and non-perturbative effects such as hadronisation and UE. In
section 4.2 we will present an overview of searches for boosted particles, whose decay
products tend to fall into the same jet. Finally, in section 4.3 we will discuss methods
to distinguish whether a jet is initiated by a quark or a gluon, highlighting why this is
important for new physics searches in colliders.

4.1 Optimising the jet radius
Consider again the problem of a Z′ decaying into two jets, where we are looking for
a peak in the dijet invariant mass distribution σ Md /d jj

2. Assuming the two jets p1 and
p2 are almost massless, their invariant mass squared is given by

⎡⎣ ⎤⎦ϕ ϕ≃ − − −( ) ( )M p p y y2 cosh cos . (4.1)jj
2

t1 t2 1 2 1 2

If p1 and p2 are just a quark and an antiquark, their invariant mass will be the mass
of the new boson ′MZ . However, the quark and antiquark will transform into jets,
whose momenta will not be the same as those of the original quark and antiquark.
This gives rise to a broad distribution, peaked around ′MZ

2 and with a width given
approximately by
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Figure 4.2. The distribution in the invariant mass of two quark jets in hadron collisions with UE, but no PU,
obtained from [5].
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where δ〈 〉pt is the difference between the transverse momentum of a jet pt and that of
the parton that has initiated it, averaged over all possible final-state configurations.
Here we have assumed that jet directions stay more or less unchanged. There are
three main effects contributing to δ〈 〉pt : QCD radiation, hadronisation, and PU
and/or UE. Here we will present the main features of each contribution. For a
more detailed analysis, the reader is referred to the original source [6].

QCD radiation. Consider one of the two jets produced by the decay of a Z′ into a
quark–antiquark pair, for instance the one initiated by the quark. When a gluon is
emitted from the quark, it can escape the jet, so that the jet transverse momentum
after the splitting is less than the quark transverse momentum. Suppose also that our
candidate jet is the one with the highest transverse momentum, which is reasonable
because we want to avoid following soft jets. In quasi-collinear kinematics, the
transverse momentum of the hardest jet after the splitting will be −z z pmax( , 1 ) t,
with pt the transverse momentum of the parent quark. Therefore, the quantity
δ = − −p z z pmin( , 1 )t t represents the transverse momentum lost in the splitting. The
average decrease δ〈 〉pt is obtained by integrating δpt over the phase space of the
emitted gluon, with the condition that the latter is not clustered with the outgoing
quark. This condition depends in general on the jet algorithm. However, for
generalised kt algorithms, a gluon escapes a jet if and only if its distance ΔR in
the y–ϕ plane from the final-state quark is bigger than the jet radius R. For small
angles, ΔR is approximately equal to the splitting angle θ, so that we have
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where P z( )qq is the splitting function related to the elementary process →q qg,
defined in (3.5). Given the fact that the splitting probability is positive, we have a
transverse momentum loss, as expected. Note that this quantity is logarithmically
enhanced in the jet radius, a consequence of the collinear singularity θ θd / in the
gluon emission probability. This means that the smaller the jet radius, the more the
jet will lose transverse momentum due to QCD radiation. This effect will in turn
spoil the resolution of an invariant mass peak.

For jets initiated by gluons, one needs to consider a gluon splitting into two
gluons or nf quark–antiquark pairs. This gives
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By comparing the size of the two contributions one sees that gluon-initiated jets lose
roughly twice as much transverse momentum with respect to quark-initiated jets.
The ratio δ δ〈 〉 〈 〉p p/t g t q is driven by the ratio of the corresponding Casimir factors
C C/A F, because the splitting probabilities are dominated by the universal soft
singularity −z zd /(1 ).

Note that, for small jet radii, the logarithms of the jet radius in (4.3) and (4.4) can
become large, thus endangering the convergence of the QCD perturbative expan-
sion. Logarithms of the jet radius can be resummed at all orders by exploiting the
coherent branching formalism and considering a cascade of collinear splittings with
decreasing angles, which stops when the angle of the most collinear splitting reaches
the jet radius R. Such resummation has been carried out in [7].

Hadronisation. Suppose some soft hadrons at large angles escaped the jet. As
explained in section 3.4, it is useful, and phenomenologically accurate, to treat such
hadrons as gluons emitted with an effective coupling α k( )s

NP
t , where kt is the relative

transverse momentum of the emitted non-perturbative gluon with respect to the
emitter. For a gluon taking a fraction − z1 of jet transverse momentum, we have

θ≃ −k z p(1 )t t. The loss of these soft hadrons will not change appreciably the
transverse momentum of the leading jet, so that the transverse momentum loss due
to hadronisation is always δ ≃ − −p z p(1 )t t. This gives, for a quark-initiated jet
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Note that we are entitled to use the most singular part (for →z 1) of the splitting
function only, because the remaining parts give a correction that is suppressed by a
higher power of the jet transverse momentum. We have also cut off the relative
transverse momentum kt with a scale μ ≃ 2 GeVI , which represents the boundary
between perturbative and non-perturbative physics, as explained in section 3.4. The
average transverse momentum loss can be further expressed in terms of the same
parameter α μ( )0 I that enters hadronisation corrections to event-shape distributions
and means as follows
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where the parameter μA( )I , introduced in (3.56) and defined precisely in [6], is the
same as entering hadronisation corrections to event-shape distributions and means
in e+e− annihilation. For a gluon jet the answer is almost identical, one needs to
replaceCF byCA. Since ≃C C2A F, it turns out that a gluon jet loses on average twice
as much transverse momentum with respect to a quark jet through hadronisation.
Note also that the relative pt loss scales as one inverse power of the jet transverse
momentum. As expected, hadronisation corrections become negligible at very high
transverse momenta.
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The leading R1/ behaviour of hadronisation corrections is reproduced by parton-
shower event generators [6]. This is not surprising, since a similar correction appears
in event-shape distributions and means, and all hadronisation models in event
generators are tuned so as to reproduce e+e− data for event shapes.

Pile-up and/or underlying event. The common characteristics of the pt-loss induced
by QCD radiation and hadronisation is that they increase with decreasing radius.
However, in hadron colliders, a better resolution cannot be obtained by just
increasing the jet radius, because of contamination from PU and UE. These
contributions can be somehow unified by considering that they produce a distribu-
tion in transverse momentum which is roughly uniform in rapidity and azimuth.
Note that, in this context, a further contamination with the same characteristics is
given by soft, yet perturbative, radiation from the initial-state partons. In our
discussion then we will simply consider a generic source of background, producing a
uniform average transverse momentum ρbkg per unit rapidity and unit azimuth. It
follows immediately that such a background produces an average increase δ〈 〉pt bkg
of the transverse momentum of a jet, getting larger with the jet radius. Assuming
E-scheme recombination for the jets, the change in transverse momentum δpt due to

background hadrons having a total transverse momentum ⃗kt can be estimated as
follows

δ ϕ= ⃗ + ⃗ − ≃
⃗ · ⃗ ≃p p k p

k p
p

k cos , (4.7)t t t t
t t

t
t

with ϕ the azimuthal angle between ⃗pt and ⃗kt. If we are interested only in the leading
dependence on the jet radius, we can take the limit of small R and hence ϕ ≃cos 1,
so that δ ≃p kt t. If we average over all possible values of kt and integrate over the
region in rapidity and azimuth corresponding to the area of the jet, we obtain [6]

〈 〉δ π ρ≃p R ,bkgt
2

bkg

with πR2 the active area of the anti-kt jet. Note that, for small R, the same result
holds for the Cambridge/Aachen and the kt algorithms.

If one considers events with no PU, parton-shower event generators do reproduce
the R2 dependence of the contribution of the UE. However, while for hadronisation
corrections there is a reasonable agreement among different parton showers
themselves, as well as with the calculation in (4.6), the size of ρbkg depends on the
model of the UE implemented in each generator, as shown in the plot in the
left-hand panel of figure 4.3. However, we recall that the contamination due to a
uniform background can be removed by means of the subtraction procedure of (2.8).
To apply that equation one needs to find an estimator of ρbkg itself using data, for
instance that defined in (2.11).

The simple calculations we have presented convey a clear message. The dominant
effect of QCD final-state radiation (perturbative or non-perturbative) is that of
degrading the transverse momentum of a jet, the larger the decrease the smaller the
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jet radius. In contrast, sources of a uniform background in rapidity and azimuth,
such as initial-state QCD radiation, PU or UE, cause an increase in a jetʼs transverse
momentum, the larger this is the larger the jet radius. It is therefore possible to find
an optimal jet radius for which the combination of the two effects is minimised. This
minimisation is particularly useful specifically in new physics searches, where one
wants to preserve as much information as possible on the partons that have initiated
each jet. Furthermore, since the effect of QCD radiation is proportional to the
charge of the parton giving rise to the jet, whereas the contribution of the UE is
independent of it, one expects that the optimal radius will be roughly double for
gluon jets than for quark jets. These naive considerations have been confirmed by
more thorough theoretical analyses. For instance, the authors of [6] minimised the
positive-definite quantity δ〈 〉pt

2 , estimated using parton-shower event generators
with no PU. The results, shown in the right-hand panel of figure 4.3, confirm our
naive expectation. Note that the optimal jet radius is smaller at the LHC than at the
Tevatron due to the larger activity of the UE, which makes it necessary to reduce
the jet radius. The pioneering study of [6] does not investigate what happens if the
contribution of a uniform background is subtracted off before optimising the jet
radius. This is carried out for instance in [4], where more sophisticated quantities
have been proposed to assess the quality of jet reconstruction for different
algorithms and jet sizes.

To conclude, finding the optimal jet radius is one of the crucial problems when
using jets as discovery tools and remains a matter of debate. In this section we have
discussed the main sources that determine the difference between the transverse
momentum of a jet and that of the parton that has initiated it. Similar arguments can
be applied to the search for boosted objects, whose decay products fall into the same
jet. This topic will be covered in the next section.

Figure 4.3. Left: the average transverse momentum difference induced by hadronisation (bottom) and UE
(top) for gluon jets at the LHC. Right: the radius R that minimises δ〈 〉pt

2 , as a function of the jet transverse
momentum pt, for quark and gluon jets at the Tevatron and at the LHC [6].
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4.2 Boosted objects and jet substructure
The LHC makes it possible, for the first time, to access in a controlled way energy
scales that are larger than those typical of electroweak interactions, which are of the
order of a few hundreds of giga-electron-volts. In this situation, a massive particle
can have a transverse momentum considerably larger than its mass and its decay
products will receive a huge boost along the particle direction. As a consequence, if a
heavy particle decays into partons, these will be likely clustered inside the same jet.
In fact, for a jet of mass mjet, the distance ΔR12 in the rapidity-azimuth plane
between two quasi-parallel constituents, carrying a fraction z and − z1 of the jet
transverse momentum pt,jet, is given by

Δ ≃
−

R
m

z z p(1 )
, (4.8)12

jet

t,jet

which, for fixed mjet, becomes smaller and smaller the larger the jet transverse
momentum. Boosted analyses thus consider a candidate jet and look for a peak in the
distribution in the invariant mass of that jet. Various problems arise in this situation.
The first is how to distinguish such jets from standard QCD jets, whose invariant
mass is dynamically generated through parton branching. The peak of the mass
distribution of a QCD jet is at around 10% of the transverse momentum of the jet.
Therefore, for a jet of the transverse momentum of 1 TeV, we expect a peak at
around 100 GeV, right at the electroweak scale! The other problem is to clean the jet
in such a way that only the hadrons originated by the decay of the heavy particle are
used to compute the jet invariant mass. Here the same considerations apply as for the
mass resolution of dijet pairs, discussed in the previous section. Partons lose energy
due to QCD radiation, so using too few jet constituents results in a lower invariant
mass than expected. In contrast, enlarging the jet constituents increases contami-
nation from uniform sources of background, such as initial-state radiation, PU or the
UE. Therefore, one needs to find an optimal procedure to clean the candidate jet
down to its relevant constituents.

The methods used to search for jets arising from the decay of heavy particles are
generally called ‘jet substructure techniques’. They were introduced for the first time
in [8], in the context of the search for a heavy Higgs boson decaying into a pair of W
bosons, one of which decays hadronically. The basic idea of the proposed analysis
was to consider a jet with a large radius, which we now call a ‘fat’ jet, measure the
invariant mass of its two hardest subjets and look for a peak corresponding to the
mass of the W boson. To reduce contamination from the UE it was also proposed to
recluster hadrons inside a fat jet with a smaller jet radius, whose size was optimised
according to the desired resolution in the fat-jet invariant mass. In the following we
give an overview of the most used methods to search for boosted heavy objects inside
fat jets. For simplicity, we will concentrate on two-prong decays, in which a
heavy particle decays into two coloured particles, referring the reader to the
recent literature on the subject [9, 10] for the generalisation to three-prong decays
(e.g. top-quark taggers [11–13]).
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4.2.1 Groomers and taggers

The most widely used procedures for jet substructure studies perform two different
kinds of actions on a jet. One is grooming, aimed at cleaning a jet of soft
constituents, whose output is always a jet which might be very different from the
original jet. These soft constituents can have any origin, can be for instance soft
gluons radiated by the hard partons that have initiated the jet, as well as
contamination from initial-state radiation, PU or UE. The second action is tagging,
through which a jet can either be kept or discarded, according to whether it
satisfies certain criteria, specific to the particle we are looking for. The first two
procedures we will discuss, trimming [14] and pruning [15], are relevant examples of
groomers. The third one, the mass-drop tagger (MDT) [16], is mainly a tagger, but
also includes some grooming procedures, such as filtering. The last one we will
present, which is also the most recent, is the soft drop [17] which can be used both as
a groomer and as a tagger. It has to be noted that a tagger can always be
supplemented by additional grooming procedures. This is the case for the original
version of the MDT, which came together with a filtering procedure, which is in fact
a groomer.

Trimming. The aim of this procedure is to clean all hard jets (i.e. those above some
transverse momentum threshold) by eliminating softer constituents [14]. Once jets
have been reconstructed, each jet is reclustered with a radius Rsub, smaller than the
jet radius. One then looks inside each jet and discards all subjets pj having a
transverse momentum < Λp ztj cut hard, where zcut is a free parameter and Λhard a
typical hard scale, for instance the transverse momentum of the parent jet. The
surviving subjets constitute the trimmed jet. Figure 4.4 illustrates pictorially how the
trimming algorithm works with a jet containing two hard and two soft constituents.
At the end of the procedure, one obtains a hard jet of radius Rsub containing the two
hard constituents only.

Pruning. This procedure aims to eliminate soft large-angle constituents of jets by
trying to follow the hardest branch of a jet [15]. This is achieved by performing a
reclustering of the constituents of each jet with a sequential algorithm such that,

Figure 4.4. (a) A jet of large radius R containing two hard constituents (the big black circles) and two soft
constituents (the small black circles). (b) The jet is reclustered with radius <R Rsub , and three subjets are
found. (c) All subjets such that < Λp ztj cut hard are discarded and only the subject containing the two hardest
constituents survives.
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whenever two constituents pi and pj are to be recombined, one checks whether they
meet the conditions

∣ ∣⃗ + ⃗ < Δ >
p p

p p
z R R

min( , )
, and . (4.9)i j

i j
ij

t t

t t
cut prune

If this is the case, the two constituents are not merged into a single jet, but the one with
smaller transverse momentum is discarded. The set of all surviving subjets constitutes
the pruned jet. The value of Rprune is not fixed, but is set dynamically. A common choice
is =R m p/prune jet t,jet, where mjet and pt,jet are the jet invariant mass and transverse
momentum, respectively. The behaviour of pruning is pictorially illustrated in figure 4.5
for the same configuration considered for trimming. Again, the final result is a jet
containing only the two hardest constituents.

Mass-drop tagger and filtering. The MDT is itself a mixture of a groomer and a
tagger. In its original version [16], it aims to find a hard jet that originates from the
two-body decay of a massive particle, such as the Higgs or a vector boson. One
starts by clustering an event into fat jets. Then, one reclusters each fat jet using the
Cambridge/Aachen algorithm, whose clustering sequence is close to reversing
the angular-ordered branching predicted by QCD. For each fat jet, the last step of
the clustering is then undone, giving two subjets p1 and p2, with masses mj1 and mj2.
In the original version of the MDT, one then checks the following conditions

μΔ > <
( )

( )
p p

m
R y m m m

min ,
, and min , . (4.10)

t1
2

t2
2

jet
2 12

2
cut j1 j2 jet

If they are both met, the two subjets are kept and the procedure stops, otherwise the
subjet with the smaller invariant mass is eliminated and one undoes one more step of
the clustering procedure. The first condition in (4.10) is in fact a groomer. It aims to
eliminate soft large-angle constituents from the jet, in particular checking for
asymmetric splittings which are typical of QCD radiation. The second relation is
the actual mass-drop condition, and acts as a tagger, in that if it is not satisfied at any
stage of the clustering, the jet is discarded as a whole. The mass-drop condition

Figure 4.5. (a) The same jet considered in figure 4.4, where circles of radius Rprune are drawn around each
constituent. (b) The first stage of the clustering: the soft jet at the bottom is discarded. (c) The second stage of the
clustering: the soft jet at the top is discarded and one is left with a jet ofRprune with the two hardest constituents only.
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implements a basic property of the decay of a heavy particle into two hard massless
objects. In fact, whenever these two massless constituents are split into two different
subjets, one observes a significant difference, effectively a drop, between the mass of
each subjet and that of the parent jet. Similarly, the procedure stops when it has
identified a pair of constituents one of which is quasi-massless. If one expects a two-
prong decay, i.e. the heavy particle decays into two partons only, the procedure can
end here. For three-prong decays, such as those of the top quark, one can consider
the subjet with larger mass and undo the clustering further until another mass drop is
found. The mass-drop procedure can be then generalised to more complicated
decays. Note that, following the study of [18], the MDT has been slightly modified
with respect to its original version. In the updated version, if any of the conditions
in (4.10) are not met, the jet pj with the largest transverse mass = +m m ptj j

2
tj
2 is

discarded. This is to avoid following a soft subjet whose mass is generated
dynamically by soft-collinear parton branching. This procedure is again explained
pictorially in figure 4.6. At the end of the procedure, using the same configuration as
in figures 4.4 and 4.5, one obtains a jet that contains only the two hardest
constituents. At this point, the mass-drop procedure can be supplemented by
filtering. This technique was introduced for the first time in combination with the
MDT, but it could be applied to trimmed or pruned jets as well. Once the hardest
constituents of a jet have been found, it might be possible that some of the soft
subjets that have been discarded were due to soft radiation from the primary hard
partons that initiated the fat jet. Losing them would result in spoiling the resolution
of the jet mass peak, as discussed in section 4.1. Filtering specifically aims to restore
the soft constituents that originated from soft radiation, while at the same time trying
to exclude spurious soft jets from a uniform background. This is achieved by
reclustering the tagged jet with a smaller radius Rfilt and measuring the distribution in
the invariant mass of only nfilt subjets, as the quantity that is supposedly closer to the
mass of the heavy particle that originated the jet. Using similar arguments as in
section 4.1, it is possible to show that perturbative QCD radiation causes a loss in the

Figure 4.6. (a) The same jet considered in figure 4.4. The last stage of the clustering is undone and two subjets
are found. (b) The mass-drop condition is not satisfied, so the soft jet at the bottom is discarded. A further
stage of the clustering is undone, and one is left with two subjets. Then the soft jet at the top is discarded
because of the failure of the mass-drop condition. (c) If one eliminates either of the remaining hard subjets, one
is left with a single massless constituent. At this stage, the mass-drop condition is met and the procedure stops,
leaving a tagged jet containing only the two hardest constituents.
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jet mass that follows Rln(1/ )filt , hadronisation corrections also provide a loss,
proportional to R1/ filt, whereas a uniform background provides an enhancement in
the jet mass that follows Rfilt

2 [16]. It is therefore possible to find an optimal radius
that minimises the jet-mass width δM. If we are looking for a colourless particle, such
as the Higgs decaying into a ¯bb pair, QCD coherence offers an extra handle to look
for the optimal filtering radius. In fact, suppose the MDT, or another procedure, has
found two subjets separated by a distance Rjj. Then, the coherence properties of
QCD radiation will force an extra soft gluon to be radiated within two cones of
radius Rjj, centred in each of the two hard subjets (see figure 4.7). Therefore, Rfilt will
have to be presumably a fraction ofRjj. A study to optimise the quantity Rfilt has been
performed for the case of Higgs production into a ¯bb pair and can be confidently
applied to the production of any two-body decay of a colourless massive particle [19].
For =n 3filt , one sees a minimum in the jet mass resolution δM as a function of
η = R R/filt jj, located at η = 0.3 (see figure 4.8, left panel). This is roughly consistent
with the value = ¯R Rmin{0.3, /2}filt bb and =n 3filt proposed by the pioneering
publication [16], in which the MDT/filtering technique was introduced for the first

Figure 4.8. The filtered-jet mass width δM as a function of η = R R/filt jj for =n 3filt , as computed in [19] (left).
The invariant mass of a filtered Higgs-candidate jet selected with the MDT procedure, taken from the
pioneering study of [16] (right).

Figure 4.7. Pictorial illustration of the filtering procedure, taken from [16]. A fat jet of radius R contains a ¯bb
pair and a soft gluon radiated by the pair (left). The MDT found the ¯bb pair but might have excluded the soft
gluon. The soft gluon is radiated within two cones of radius ¯Rbb, centred around each of the b quarks (middle).
With the filtering procedure, the fat jet is reclustered with a radius < ¯R Rfilt bb and three subjets are considered
in the calculation of the invariant mass of the jet, so as to re-include the soft gluon (right).
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time to look for a boosted Higgs boson decaying into a ¯bb pair and produced in
association with a vector boson at the LHC with =s 14 TeV. The result of that
analysis was that it was possible to find a candidate fat jet that survived the MDT
procedure and whose mass distribution after filtering showed a nice peak around the
Higgs mass, taken to be 115 GeV in [16] (see figure 4.8, right).

Soft drop. Along the same line of thought, a further improvement of the modified
MDT (mMDT) is the ‘soft drop’ [17]. Its first step proceeds exactly as with the
MDT, in that it reclusters a jet with the Cambridge/Aachen algorithm and undoes
the last step of the clustering of a jet, finding two subjets p1 and p2. Then, one checks
if they satisfy the soft-drop condition

⎜ ⎟⎛
⎝

⎞
⎠+ > Δ β)p p

p p
z

R
R

min( ,
, (4.11)t1 t2

t1 t2
cut

12

where β is a parameter that can take any value. If the soft-drop condition is not met,
then the subjet with lower transverse momentum is removed. A peculiarity of the
soft-drop procedure is that it acts as a groomer or a tagger, according to the value of
β. Specifically, for β > 0 it removes the soft constituents of a jet, with β essentially
controlling the angular size of the groomed jet. The output of the procedure for
β > 0 is a jet with a reduced radius, so that the algorithm behaves as a groomer. In
contrast, for β < 0, the soft-drop condition implicitly forces the two subjets to have a
large-angle separation and hence selects only jets that contain at least two hard, well-
separated subjets, as is typical for two-prong decays. In fact, for β < 0 the algorithm
behaves as a tagger. The case β = 0 corresponds to the asymmetry condition of the
MDT, which in fact can be rewritten as

Δ ≃ ≃
− +

>
( ) ( ) ( )
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where we have assumed that the two subjets p1 and p2 are very close in angle. In fact,
(4.12) represents a soft-drop condition with = −z z z y(1 )cut cut . Furthermore, for
β = 0, the soft-drop condition corresponds to the mMDT, because only the subjet
with larger transverse momentum is kept if the asymmetry condition fails and not
the one with the larger invariant mass as in the original version of the MDT. The
soft-drop condition for β < 0, i.e. in tagging mode, avoids the need for the mass-
drop check altogether.

The above ideas have been refined over the years and now we have a considerable
number of taggers for boosted objects, the description of which goes beyond what can
be covered in this book. A yearly report on the state-of-the-art of existing taggers can
be found in the proceeding of the BOOST conferences (see [9, 10] for the most recent
conference proceedings). In the rest of this section we will instead concentrate on how
a quantitative understanding of the various taggers using perturbative QCD can be
exploited to improve their performance. The last subsection of this section is devoted
to an overview of recent experimental studies on jet substructure.
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4.2.2 Groomers and taggers in QCD

Given the variety of methods available to investigate jet substructure, it is natural to
ask the question of how to assess their performance. One way of doing this is to
study their behaviour using perturbative QCD, as proposed in [18]. There the
authors considered the invariant mass of a QCD jet, more specifically
the dimensionless variable ρ = m p R/( )jet

2
t,jet
2 2 , after trimming, pruning or MDT.

The main idea is that not only should a tagger be able to identify the relevant
constituent in a signal jet, but also it should reduce the number of background jets
that pass the tagger. Also, ideally one would prefer the mass distribution of a QCD
jet to be featureless, without peaks that can mimic a signal peak. For instance, the
plain jet mass distribution, which has a peak at around 10% of the jet transverse
momentum, may not be the ideal for boosted object searches. The peak is a
consequence of the fact that QCD radiation that dominates the mass distribution at
large invariant masses, is then suppressed and vanishes at low invariant masses due
to the presence of a Sudakov form factor, as explained in section 3.3. We call this
feature a Sudakov peak. A first interesting result of a QCD analysis of the ρ
distribution is that, after trimming or pruning, it still shows features. This can be
seen in figure 4.9, which shows the ρ distribution for trimmed (left) and pruned
(right) quark jets. In particular, it is interesting to investigate the behaviour of the
distribution ρ σ ρd /d for decreasing values of ρ. As expected, the distribution starts
with an increase, due to the jet being dominated by a single gluon emission. Then, at
around ρ ≃ 0.1, the distribution becomes almost flat until a turning point at
ρ ≃ 0.01, which, unfortunately, for 1 TeV jets just coincides with the electroweak
scale, where the masses of interesting particles lie! The plots in the figure were
obtained using the Monte Carlo event generator PYTHIA 6, but the same features
are obtained with an analytic calculation. This feature can be easily understood for a

Figure 4.9. The distribution ρ σ ρd /d for a trimmed (left) and a pruned (right) quark jet with =p 3 TeVt [18].
The plots report also the corresponding value of the jet mass, here denoted by m.
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trimmed jet, which differs from the original jet only in that it has a smaller radius.
This gives a peak that is moved to lower values of ρ with respect to that of the plain
jet mass distribution. In the case of pruning the situation is more complicated. In
fact it turns out that this procedure actually selects two kinds of jets. If one does not
find in any of the clusterings a pair of subjets pi and pj such that Δ >R Rij prune

and > ∣ ⃗ + ⃗ ∣p p z p pmin( , )i j i jt t cut t t , it means that the jet mass mjet, and hence
=R m p/prune jet t,jet is set by the energy of the soft large-angle constituent that is

pruned away (see figure 4.10, left panel). Therefore, the mass of the pruned jet will be
just the mass of a jet of radius Rprune, which has a peak at some low value of ρ, which
is what is seen in figure 4.9. These narrow jets are called I-pruned jets, due to their
shape. If, however, one finds at least one clustering with Δ >R Rij prune and

> ∣ ⃗ + ⃗ ∣p p z p pmin( , )i j i jt t cut t t , the jet will have a two-prong structure and its
invariant mass, and hence Rprune, will be basically unaffected by extra soft
radiation (see figure 4.10, right panel). Such jets are called Y-pruned jets, again
due to their shape. I-pruned jets can be discarded by looking at the clustering
sequence, leaving only Y-pruned jets. The mass distribution of Y-pruned jets no
longer has a Sudakov peak, but vanishes smoothly with ρ. Interestingly, while
I-pruning is essentially a groomer, Y-pruning is in fact a tagger, since only two-
prong structures are kept. Concerning MDT, the analysis of [18] discovered a flaw
in the original procedure, which has now been replaced by the mMDT described in
the text. In fact, suppose the mass-drop condition has to be checked on two subjets
one of which is energetic but almost massless, and the other is massive but its mass
results from multiple splittings of a soft gluon (see figure 4.11, left panel). In this
case, the algorithm will discard the hard subjet and follow the soft subjet until it
finds two massless constituents. This occurrence is rare, because soft subjets are
normally eliminated by the asymmetry condition, the first of (4.10). However, this
is clearly an unwanted feature of the MDT and can be avoided by just discarding
the subjet with the lower transverse mass, instead of that with the lower invariant
mass. Another possibility is to follow the branch with the larger transverse
momentum, as is done by the soft-drop procedure. One more interesting feature
of the MDT, particularly of its modified version, is that it is possible to tune its
parameter ycut in such a way that the mass distribution of a tagged jet does not have

Figure 4.10. Configurations at α( )s
26 that give rise to a I-pruning (left) and Y-pruning (right). Left: soft gluon

p3 sets Rprune and is then pruned away. Right: Rprune is set by hard gluon p2 and soft gluon p3 is simply pruned
away. Both pictures have been drawn by the author, inspired by the pictures in [18].
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the characteristic Sudakov peak, being more or less flat from the point at which the
MDT condition sets in (see figure 4.11, right panel). Such featureless mass distribution
is ideal to distinguish signal from background. From this analysis one sees that an
analytical understanding of groomers and taggers from the point of view of
perturbative QCD can lead to improvements that would be difficult to devise through
a trial–error procedure. Similarly, one can investigate the behaviour of the soft-drop
tagger as a function of β. As already stated, for β > 0 the procedure is basically
equivalent to trimming or pruning, for β = 0 it roughly corresponds to the mMDT,
whereas for β < 0, the extreme tagging mode, its behaviour resembles that of
Y-pruning. The performance of the various taggers can be assessed by studying the
acceptance efficiency for the signal εS (the number of tagged signal jets over the total
number of signal jets) versus that for the background εB. In figure 4.12 we find a
couple of examples of such studies for the tagging of a boosted W boson. The one on
the left is taken from [18], and shows ε ε/S B as a measure of the signal significance, as
a function of the tagged jet transverse momentum. There one can see the better
performance of taggers with respect to groomers. In particular, Y-pruning seems to
outperform the other taggers at large pt. The plot on the right, taken from [17], shows
instead ε ε/S B as a function of the jet transverse momentum, for different variants of the
soft-drop procedure, corresponding to different values of the parameter β. The pattern
is very similar, with taggers performing better than groomers. Also, variants with
negative β outperform the one with β = 0, which corresponds roughly to the mMDT.
Their performance is similar to that of Y-pruning. This is not surprising, in that setting
β < 0 de facto removes jets that are very collimated, thus leaving two-prong structures
only, the more aggressive the cut the more negative β is.

Figure 4.11. Left: a configuration that leads the original mass-drop procedure to follow an incorrect branch; in
this case the original algorithm discards the subjet made up of a single quark because it is energetic, but
massless. The picture has been drawn by the author, and is similar to the corresponding picture in [18]. Right:
the distribution ρ σ ρd /d for a jet tagged with the MDT procedure [18].
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4.2.3 Event shapes for jet-substructure studies

The procedures we have seen so far are based on the declustering of a jet and
subsequent elimination of jet constituents. A complementary approach is to use
event shapes, or jet resolution parameters, using the constituents of a fat jet as
inputs. Suppose that one reclusters a fat jet using the kt algorithm. Then, a single jet
will have a one-jet resolution y1 that is of order one. If a jet is made up of two
energetic subjets, then the two-jet resolution y2 will also be of order one. A QCD jet
instead will tend to have a small two-jet resolution. Therefore, the distribution in
y y/2 1 will be peaked at lower values for QCD jets than for jets originating from
hadronic decays of a heavy particle. One can then separate signal from background
by simply performing a cut in y y/2 1. For two-prong decays, this is similar to the
asymmetry condition for the MDT in (4.10). Similarly, one can look for three-prong
decays by performing a cut on y y/3 2, and so on. This is the basis of the tagging
procedure encoded in the program Y-splitter [20]. Jet resolutions are just an example
of a discriminating variable. More recent studies use theN-subjettiness variable [21, 22],
defined after declustering a jet of radius R into N subjets as

∑ ∑τ = Δ Δ … Δ =
∈ ∈

β β β β β{ }( ) ( ) ( )
d

p R R R d p R
1

min , , , , . (4.13)
i ijet jet

N i i i Ni i
( )

0
t 1 2 0 t

The parameter β gives then the extra freedom to vary the relative importance of soft
and collinear radiation, as happened in the case of the soft drop. The sums in the above
expression run over all jet constituents and ΔRjk is the y–ϕ distance between the jet
momentum pj, with = …j N1, , , and the jet constituent pk. The use of N-subjettiness
is similar to that of the Y-splitter: looking for a N-prong decay requires a suitable cut
on τ τ −/N N 1 (with τ τ≡N N

(1)). N-subjettiness is more tractable than the Y-splitter from an
analytical point of view, because of the existence of all-order factorisation formulae in

Figure 4.12. Estimate of signal versus background tagging efficiency for various taggers as a function of the
minimum transverse momentum of the tagged jet pt,min [18] (left) and of the soft-drop tagger for various values
of β, as a function of the tagged jet transverse momentum pt [17] (right).
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SCET, at least for its global variantN-jettiness [23]. Another example of variables that
can be used to investigate jet substructure is ratios of generalised energy-correlation
functions (ECFs) βNECF( , ) [24], defined by the relations

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

∑

∑ ∏ ∏ ∏

β
β

β

β

=
=

= Δ

= Δ

∈

< ∈

… ∈ = =

−

= +

β

β

( )

p

p p R

N p R

ECF(0, ) 1

ECF(1, )

ECF(2, ) ,

ECF( , ) .

(4.14)

i

i j

i i i a

N

b

N

c b

N

jet

jet

, , , jet 1 1

1

1

i

i j ij

i i i

t

t t

t

n

a b c

1 2

For instance, for two-prong decays one can consider the ratio βC1
( ), defined as

β β
β=βC

ECF(2, )ECF(0, )
ECF(1, )

, (4.15)1
( )

2

where by comparing (4.14) and (4.13), one sees that βC1
( ) is related to the 1-subjettiness

variable defined in (4.13). A comparison of the performance of generalised ECFs and
N-subjettiness can be found in [24]. ECFs will be discussed further in the context of
separation between quark and gluon jets.

4.2.4 The role of interjet radiation

Let us consider again the case of a boosted Higgs decaying into a ¯bb pair and
suppose that, after some tagging procedure, we are left with a jet cleaned of all its
soft constituents, showing two subjets, both tagged as b jets (see figure 4.7). An
irreducible background to our signal originates from a gluon splitting into a ¯bb pair.
Due to the collinear singularity of gluon splitting, it is presumable that such a
background will be reduced by a suitable cut, such as the asymmetry cut in (4.10).
However, QCD radiation is more probable than any electroweak process we wish to
observe, so many events with two well-separated b jets arising from gluon splitting
will probably survive the cuts. A way to reduce this background is to observe that a
gluon carries a colour charge, whereas a Higgs does not. Therefore, due to the
coherence properties of QCD radiation, in the case of → ¯H bb, radiation coming
from the ¯bb pair will be roughly contained inside the fat jet (see figure 4.7), whereas
in the gluon case there will be a considerable amount of radiation outside as well.
A way of exploiting this information is to veto additional jets in the event. In fact,
final-state radiation at angles larger than the jet radius will produce additional jets,
so that vetoing this activity suppresses the background through a Sudakov form
factor, whereas no such price is paid for the signal. However, both signal and
background events are affected by initial-state radiation, so that Sudakov form
factors will suppress the signal as well. Imposing vetoes on extra jets is a way to
exploit the angular distribution of energy–momentum flow in QCD and Higgs jets.
In fact, in → ¯H bb, QCD radiation will be contained in the region between the two
b jets (we say in this case that the b and anti-b are ‘colour connected’), whereas in the
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case of a QCD event, radiation will preferably occupy the region between each jet and
the closest beam. This is pictorially illustrated in figure 4.13. A way of specifically
quantifying this effect is through a physical quantity called the ‘pull’ vector, which is a
property of each jet and gives an idea of the direction in which the colour flow of an
event is ‘pulled’. For any particle pi in the jet ‘J’ of momentum pJ, one considers the
two-dimensional distance vector ϕ ϕ⃗ = − −r y y( , )i i iJ J . In terms of this quantity the
pull vector of jet ‘J’ is defined as

∑⃗ ≡ ∣ ⃗∣ ⃗
∈

v
p r
p

r . (4.16)
i J

i i
ip

J t

tJ

An interesting quantity to look at is the pull angle θP that the pull vector forms with
respect to a reference axis. In [25] the reference axis was chosen to be that of one of
the beams. The expectation was that the distribution in the pull angle of a b jet in
signal and background events would be peaked at θ π= ±0,t for background events
and at the position of the other b jet for signal events. That this variable is indeed an
event-by-event probe of colour connections has been confirmed by an experimental
analysis performed by the ATLAS collaboration [26], which considers two jets
coming from the decay of a W boson from the decay of a top quark. The measured
quantity is the pull angle of one of the jets with respect to the axis of the other jet (see
figure 4.14, left panel). The distribution in the pull angle (see figure 4.14, right panel)
is then compared to the output of different Monte Carlo event generators, one of
which has flipped colour connections, so that one of the quarks coming from the
decay of the W is not colour-connected to the other antiquark, but rather to the b
quark coming from the decay of the top. As expected, the pull angle distribution is
peaked around zero. This behaviour is reproduced by a standard colour connection
(labelled ‘SM ¯tt’ in figure 4.14), but not by the flipped colour connection (labelled
‘Flipped ¯tt’ in figure 4.14).

4.2.5 Quantum jets and volatility

As we have seen in section 2.2, it is possible to run traditional jet algorithms in
quantum mode [27]. This is done by repeating the jet clustering procedure Ntree times

Figure 4.13. A pictorial representation of the preferred directions of QCD radiation (the big arrows) in an
event in which a b–b̄ pair is produced via the decay of a colourless particle (left) or through the splitting of a
coloured particle, for instance a gluon (right) [25].
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for each event, each time giving a different probability to the clustering sequence. In
practice, each event will not be clustered unambiguously into jets, but we will instead
obtain Ntree different sets of jet momenta, each with a different assigned probability.
For instance, if we run a sequential algorithm inside a fat jet applying a pruning
procedure, we will obtain a probability distribution for the pruned mass instead of a
single value. Once one considers all possible events, one obtains very different
distributions for quantum versus classical pruned jets, as shown in figure 2.13 of
section 2.2.

A first consequence of the existence of multiple interpretations for an event is that
signal events that look background-like can be clustered in different ways and then
they have the chance of being kept rather than rejected, as might happen by
enforcing a single interpretation. This has the overall effect of increasing the
significance of the signal over the background.

Quantum jets also offer the possibility of defining new observables that would be
just zero at the classical level. For instance, given the mass of a jet mjet, one can
define the volatility of a jet as [27]

〈 〉 〈 〉
〈 〉≡

−m m

m
, (4.17)

jet
2

jet
2

jet
=

where the average has to be taken over all possible interpretations of an event. For
instance, if we wish to distinguish between W jets and QCD jets, we expect the
former to have a smaller volatility. This is because these jets will have a mass close to
the W mass, which will fluctuate less over multiple interpretations. This is what is
observed in the left-hand panel of figure 4.15, which shows the distribution in
volatility for W and QCD jets. Therefore, performing a cut on volatility is a viable
way to discriminate between signal and background. The performance of this

Figure 4.14. The pull angle measured by the ATLAS collaboration in [26] (left) and its differential distribution
obtained with charged tracks only, compared to different predictions obtained with parton-shower event
generators (right).
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discriminator is shown in the plot of the right-hand panel of figure 4.15, where one
can see the efficiency for background acceptance versus that for the signal, both
normalised to the corresponding classical limit, for various values of the rigidity
parameter α controlling the quantum jet algorithm. The plots correspond to a cut

< 0.03= . It is interesting to note that allowing multiple interpretations overall
decreases the efficiency for signal and background with respect to the classical case.
However, the resulting efficiency for the background can be reduced by a factor of
ten more than that for the signal, thus giving a larger significance of the signal over
the background. In fact, for the point with the best performance, located around
(0.25, 003) in the plot, the significance of the signal is doubled with respect to the
classical case. For a comprehensive study of the use of quantum jets for signal and
background discrimination the reader is referred to [28].

4.2.6 Jet substructure studies at the LHC

Ultimately, the effectiveness of all the procedures described so far has to be validated
using real data, before they can be used in actual searches. This can be achieved by
considering events in which the decaying heavy particle is known (a so-called ‘pure
sample’) and performing jet-substructure studies on that sample.

The first run of the LHC has been an excellent playground to test the performance
of different jet-substructure techniques. A large number of Z and W bosons, as well
as top quarks, have offered the possibility to have reasonably pure samples of heavy
particles generating two- and three-prong hadronic decays. And of course, a large
amount of jet data is the ideal laboratory to investigate the properties of pure QCD
jets. Here we will focus on experimental studies of two-prong decays, namely those
of W and Z bosons. The reader interested in boosted top decays can find a
comprehensive study in [29]. The study compares the performance of various jet-
substructure procedures for top, W and QCD jets. This source also contains a
detailed description of how to perform the calibration of highly boosted jets. This is
particularly important in view of the fact that the target observable for jet
substructure studies is the jet invariant mass, and also that many taggers and

Figure 4.15. Left: the distribution in the volatility for W and QCD jets corresponding to a rigidity parameter
α = 0.01. Right: the efficiency for background acceptance (normalised to the classical value) versus that for the
signal (also normalised to the classical value) [27].
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groomers need ratios of transverse momenta and invariant masses between pairs of
subjets to be precisely measured.

The CMS Collaboration has considered a pure sample of W bosons originating
from semi-leptonic top decays [30]. This means that the W from one of the tops
decays into leptons, i.e. giving a charged lepton (electron or muon) and a neutrino,
whereas the other W decays hadronically. The study includes pruning, the MDT in
its original version, event shapes such asN-subjettiness and moments of ECFs, Q-jets
volatility and the jet charge [31]. A combined study of these variables has shown that
pruning the W jet and imposing a cut on τ τ/2 1 provides an efficient separation between
the signal and QCD background. In particular, τ τ </ 0.52 1 selects predominantly
W jets, cutting off most of the QCD background. The effectiveness of the cut can be
seen from the distribution in the pruned mass for τ τ </ 0.52 1 (figure 4.16, left panel)
and for τ τ >/ 0.52 1 (figure 4.16, right panel), for events in which a W boson decays
into a muon and a neutrino. For τ τ </ 0.52 1 the pruned mass distribution does show
a peak in correspondence to the W mass, but this peak has a very poor resolution.
This is not the case for τ τ </ 0.52 1 , where a mass peak is clearly visible.

In [32] ATLAS used a mixed sample of W and Z jets, as well as QCD jets, to
measure the invariant-mass distribution of a jet before and after jet grooming with
various techniques. These included pruning, trimming, as well as area subtraction, as
explained in section 2.13. Figure 4.17 shows a comparison between the distribution
in the invariant mass of a jet, both groomed and ungroomed, and the corresponding
predictions obtained with parton-shower event generators. As discussed in [18] and
reported in section 4.2.2, the main effect of groomers is that of reducing the effective
radius of jets, hence pushing the peak in their invariant mass distribution to lower
values. Also, the comparison with parton-shower event generators is excellent, thus
confirming the reliability of these theoretical tools. Another important result is that,
in the presence of PU, the distribution in the invariant mass of groomed jets is

Figure 4.16. The distribution in the invariant mass of a pruned jet in semi-leptonic ¯tt events for τ τ </ 0.52 1

(left) and τ τ/2 1 > 0.5 (right), as measured by the CMS collaboration [30].
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basically independent of the number of secondary interaction vertices Nvtx, as can be
seen in the right-hand panel of figure 4.18 for the specific case of trimming, although
all groomers show the same behaviour. This is to be compared to the large
dependence on the number of secondary vertices seen for the ungroomed jet mass
distribution in the left-hand panel of figure 4.18. This study, as well as that in [30],
show that grooming procedures such as trimming and pruning are suitable
alternatives to the jet-area method as a means to eliminate PU contamination to
boosted jets.

4.3 Quark–gluon jet discrimination
In many new physics searches, it is important to be able to distinguish whether a jet
was initiated by a quark or a gluon. For instance, the jets produced in subsequent
decays of supersymmetric particles are usually quark jets and the corresponding
background largely gluon jets (see e.g. [33]).

Figure 4.18. The invariant mass distribution of a jet before grooming (left) and after trimming (right), for
events with low <N( 5)Vtx and high PU >N( 10)Vtx , as measured by the ATLAS collaboration [32].

Figure 4.17. The invariant mass of a jet as measured by the ATLAS collaboration [32], with and without
grooming.
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4.3.1 Differences between quark and gluon jets

First of all, it is natural to define the flavour of a jet as the net sum of the flavour of
all its constituents, i.e. the sum of the quarks minus the sum of the antiquarks, with
gluons not contributing to the flavour of a jet [34]. Before hadronisation, the flavour
of a jet is a well-defined quantity. If jets are clustered using any IRC safe algorithm,
such a definition of flavour is invariant under collinear splittings. However, soft
large-angle quark–antiquark pairs might be separated by the clustering procedure
and the resulting flavour of jets becomes infrared unsafe. In the case of the kt
algorithm, such unsafety can be removed via a modification of the kt distance when
the softer of the two particles that are to be clustered is a quark. This gives rise to the
family of flavour-kt algorithms, which have various applications in perturbative
QCD studies [34, 35]. Such an approach, although theoretically rigorous, cannot be
used in practice to determine the flavour of a jet, simply because one does not in
general have access to the full information on the flavour of all particles in an event.

The current way to discriminate between quark and gluon jets is to instead use
variables whose distributions are different for quark and gluon jets. One then
imposes a cut in a discriminating variable and looks at the fraction of gluon jets that
do not pass the cut (gluon-jet rejection) as a function of the fraction of quark jets
that do survive the cut (quark-jet acceptance). The aim is to find an observable for
which both quantities are large. It is thus natural to exploit the fact that gluons
radiate roughly twice as much as quarks. Therefore, any observable that is sensitive
to QCD radiation can be used for this purpose. Among these variables, one having a
good discriminating power is the girth of a jet ‘J’1 [36], defined as

∑= Δ
∈

g
p
p

R . (4.18)
i jet

i
i

t

tJ
J

Note that this observable is very close to the generalised 1-jettiness variable τ1
(1), defined

in (4.13). Before reviewing the performance of different event-shapes, we discuss the
basics of quark-gluon jet discrimination based on colour. The event shapes that
we consider here are zero for a single massless particle and acquire a non-zero value
dynamically through QCD radiation. As for the jet mass distribution in figure 4.9, the
girth distribution has a peak at a non-zero value of g. The position of the peak is
different for quark and gluon jets, and at higher values of g for gluon jets than for
quark jets. Quark–gluon jet discrimination can be achieved by cutting the girth
distribution at a value gcut so as to include the peak of the girth distribution for quark
jets and leave out the peak of the same distribution for gluon jets. The fraction of quark
and gluon jets surviving the cut is simply given by the two cumulative distributions

Σ ≃ Σ ≃α
π

α
π− −g g( ) e , ( ) e , (4.19)C g C g

q cut
ln

g cut
lnF

s 2
cut A

s 2
cut

where in the analytic evaluation of Σ − g( )q g cut we have kept only the leading double
logarithms. What one immediately observes here is that, if Σ =g x( )q cut , i.e. one keeps

1 In studies of event shapes at hadron colliders, the very same variable is known as jet broadening [37].
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a fraction x of quark jets, one automatically keeps a fraction xC C/A F of gluon jets.
This scaling holds at LL accuracy not only for the girth, but for any IRC safe final-state
observable whose double logarithms exponentiate. This is due to the fact that, at LL
level, both Σq and Σg are given by Sudakov exponents, proportional to the colour charge
of the parton that has initiated the jet. This means that the different discriminating power
of event shapes is due to subleading effects, which are generally not very large and
moreover are not treated in the same way by parton-shower event generators, which
are the tools used in both theoretical and experimental studies of quark–gluon jet
discrimination. In particular, beyond LL approximation, the discriminating power of an
event shape depends on the relative importance of soft and collinear radiation. ECFs and
their ratios have a built-in handle for this, their parameter β. For instance, one can
consider [24] the ratio βC1

( ) of (4.15). Note that, for β = 1, this variable has the same
properties as the girth. Analytical studies of Σ −q g ( βC1

( )) for different values of β suggest
that smaller values of this parameter (e.g. β = 0.2) give a better quark–gluon jet
discrimination, although the improvement with respect to the girth is not dramatic,
being driven by subleading effects. An example of the performance of different
variables is given in figure 4.19. The plot on the left shows the tagging efficiency for
quark jets versus the same quantity for gluon jets, obtained through an analytical
calculation at NLL + LO accuracy (see [24] for details), for the ratio of moments of
ECFs βC1

( ) (see (4.15)) corresponding to different values of β. For a given quark
tagging efficiency, the best discriminator is the one that has the lowest gluon tagging
efficiency. At LL accuracy there is no dependence on β, because the ratio between
the two efficiencies is determined by colour factors only. Differences start to appear
at NLL, where one sees that increasing the importance of collinear versus soft
contributions (i.e. decreasing β) increases the discriminatory power of an observable.
The same behaviour is seen with Monte Carlo event generators, although numbers
differ slightly due to differences in the treatment of subleading effects. The plot on
the right shows instead the gluon rejection rate (i.e. one minus the gluon tagging
efficiency) corresponding to a 50% quark acceptance rate, as a function of β, both for

Figure 4.19. Left: gluon jet tagging efficiency versus quark jet tagging efficiency for the ratio of moments of
ECFs βC1

( ) [24]. Right: gluon jet rejection rate corresponding to a 50% quark jet tagging efficiency as a function
of the parameter β, for various event shapes [24].

Hadronic Jets

4-25



βC1
( ) and for 1-subjettiness. We note that, while the rejection power for βC1

( ) increases
with decreasing β, it freezes for 1-subjettiness, when the axis with respect to which
this variable is computed coincides with the jet axis. This is due to the fact that, for
β ⩽ 1, 1-subjettiness is mostly sensitive to QCD radiation through recoil, rather than
direct emission detection. This is not the case if 1-subjettiness is computed with
respect to the axis that minimises 1-subjettiness itself (called the ‘broadening axis’ in
the figure). In this case 1-subjettiness is very similar to the corresponding βC1

( ).
The latter observable has, however, the advantage of not requiring a minimisation
procedure in order to be computed. In addition to IRC safe observables such as event
shapes, one can also consider unsafe ones, such as charged hadron multiplicities, or jet
electric charges [31]. These variables are sensitive in many ways to the different QCD
radiation patterns of quark and gluon jets. Many of those have various degrees of
correlation, so it might be useful to combine different variables and use neural-
network methods to find the optimal combination of cuts. Examples of such studies
can be found in [10, 36, 38].

4.3.2 Quark and gluon jet discrimination at the LHC

Systematic studies of the properties of quark and gluon jets have been performed at
LEP (see e.g. [39, 40]). These analyses exploit three-jet events in which two b-tagged
jets fall in the same hemisphere, thus leaving an energetic gluon jet in the other
hemisphere to obtain pure samples of gluon jets. This information is used to measure
the particle multiplicities inside quark and gluon jets and extract from that the ratio
C C/A F. In fact, the ratio of hadron multiplicity in quark and gluon jets tends for
asymptotically high energies to the ratio of the corresponding colour factors. A
preliminary measurement of C C/A F has also been performed at the Tevatron [41].

LHC experiments have exploited the ideas illustrated in section 4.3.1 to build
statistical discriminants between quark and gluon jets. These use some of the
variables defined in section 4.3.1, picking up the ones that are less correlated.
ATLAS uses at the scope the number of tracks associated to a jet, the width of
the jet, which is in fact the girth or broadening of the jet, as well as βC1

( ) for
different values of the parameter β, referred to as energy-energy-correlation (EEC)
angularity [42]. The best performing EEC angularity (the one with β = 0.2, see
figure 4.20) is then discarded in favour of the jet width because it is too correlated
with the track multiplicity. A statistical discriminant is then constructed using the
differential distribution in these two variables. The result for high pt jets can be seen
in the right-hand panel of figure 4.20. There one sees that the discriminant is able to
achieve 50% quark jet efficiency by rejecting 80% of the gluon jets. Similarly,
CMS [43] has used a statistical discriminant based on three variables, the multi-
plicity of jet constituents, an event shape sensitive to the width of a jet, similar to the
F-parameter of [44] and a variable p DT , defined as:

=
∑
∑
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whose distribution gives an idea of how the energy of a jet is shared among its
components. From its definition one sees that →p D 1T for a jet made up of a single
particle and →p D 0T for a jet consisting of an infinite number of particles.
A preliminary analysis using events with two jets and a Z recoiling against a jet
shows that it is possible to accept quark jets with 60% efficiency, while rejecting 70%
of gluon jets [43].
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