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ABSTRACT: A key question for machine learning approaches in particle physics is how
to best represent and learn from collider events. As an event is intrinsically a variable-
length unordered set of particles, we build upon recent machine learning efforts to learn
directly from sets of features or “point clouds”. Adapting and specializing the “Deep Sets”
framework to particle physics, we introduce Energy Flow Networks, which respect infrared
and collinear safety by construction. We also develop Particle Flow Networks, which allow
for general energy dependence and the inclusion of additional particle-level information such
as charge and flavor. These networks feature a per-particle internal (latent) representation,
and summing over all particles yields an overall event-level latent representation. We show
how this latent space decomposition unifies existing event representations based on detector
images and radiation moments. To demonstrate the power and simplicity of this set-based
approach, we apply these networks to the collider task of discriminating quark jets from
gluon jets, finding similar or improved performance compared to existing methods. We also
show how the learned event representation can be directly visualized, providing insight
into the inner workings of the model. These architectures lend themselves to efficiently
processing and analyzing events for a wide variety of tasks at the Large Hadron Collider.
Implementations and examples of our architectures are available online in our EnergyFlow
package.
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1 Introduction

Collisions at accelerators like the Large Hadron Collider (LHC) produce multitudes of par-
ticles. Particles are the fundamental objects of interest in collider physics and provide
an interface between theoretical calculations and experimental measurements, often recon-
structed experimentally via “particle flow” algorithms [1-3]. Analyses of collider data rely
on observables to distill these complicated multiparticle events and capture essential as-
pects of the underlying physics. Because each collision event consists of a variable-length
list of particles with no intrinsic ordering, collider observables must be sensibly defined as
functions of sets of particles. In this paper, we develop a novel architecture for processing
and learning from collider events in their natural set-based representation.

Recently, modern machine learning techniques have been used to achieve excellent per-
formance on a variety of collider tasks by learning specalized functions of the events, which



can be viewed as observables in their own right. For instance, hadronic jet classification
has been thoroughly studied using low-level [4-23] and high-level [24-29] input observ-
ables. Additional tasks include the removal of pileup [30], model-independent new physics
searches [31-36], constraining effective field theories [37-39], probabilistic and generative
modeling of physics processes [40-44], and enhancing existing physics analyses [45-53]. See
refs. [54-58] for more detailed reviews of machine learning in high-energy physics.

Two key choices must be made when using machine learning for a collider task: how to
represent the event and how to analyze that representation. These choices are often made
together, with examples from collider physics including calorimeter images paired with
convolutional neural networks (CNNs) [5-14], particle lists paired with recurrent/recursive
neural networks (RNNs) [15-19], collections of ordered inputs paired with dense neural
networks (DNNs) [20-27], and Energy Flow Polynomials (EFPs) paired with linear meth-
ods [29]. One lesson that emerges from this body of work is that any two sufficiently
general models, given access to complete enough information, achieve similar performance.
In light of this, criteria such as understandability of the model and closeness to theoretical
and experimental constructs are of central importance.

Given that events are fundamentally sets of particles, particle-level inputs such as those
used in refs. [15-22] are a desirable way of representing an event for use in a model. That
said, RNNs and DNNSs, the two architectures typically used with particle-level inputs, each
fail to be fully satisfactory methods for processing events: DNNs because they require a
fixed-size input and RNNs because they are explicitly dependent on the ordering of the
inputs. Though ad hoc workarounds for these problems exist, such as zero padding for
DNNSs or ordering particles by their transverse momentum (pr) or clustering history for
RNNs, an ideal architecture would manifestly respect the permutation symmetry of the
problem. Such an architecture would be able to handle variable-length inputs while being
inherently symmetric with respect to the ordering of the input particles.

The machine learning community has recently developed (and continues to explore)
technology which is ideally suited for representing sets of objects for a model [59-68]. One
context where this appears is learning from point clouds, sets of data points in space. For
instance, the output of spatial sensors such as lidar, relevant for self-driving car technolo-
gies, is often in the form of a point cloud. As point clouds share the variable-length and
permutation-symmetric properties with collider events, it is worthwhile to understand and
expand upon point cloud techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in ref. [63], demon-
strates how permutation-invariant functions of variable-length inputs can be parametrized
in a fully general way. In ref. [63], the method was applied to a wide variety of problems in-
cluding red-shift estimation of galaxy clusters, finding terms associated with a set of words,
and detecting anomalous faces in a set of images. The key observation is that summation,
which is clearly symmetric with respect to the order of the arguments, is general enough to
encapsulate all symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary
number of particles each with d features, the result from ref. [63] can be stated as:
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Figure 1. A visualization of the decomposition of an observable via eq. (1.1). Each particle in the
event is mapped by ® to an internal (latent) particle representation, shown here as three abstract
illustrations for a latent space of dimension three. The latent representation is then summed over
all particles to arrive at a latent event representation, which is mapped by F' to the value of the
observable. For the IRC-safe case of eq. (1.2), ® takes in the angular information of the particle
and the sum is weighted by the particle energies or transverse momenta.

Observable Decomposition. An observable O can be approximated arbitrarily well as:

O({p1,...,pu}) =F (Z <I>(pz-)> : (1.1)

where ® : R — R is a per-particle mapping and F : RY — R is a continuous function.

A schematic representation of eq. (1.1) is shown in figure 1. Inherent in the decompo-
sition of eq. (1.1) is a latent space of dimension ¢ that serves to embed the particles such
that an overall latent event representation is obtained when the sum is carried out. One
should think of the d features for each particle as possibly being kinematic information,
such as the particle’s pr, rapidity y, and azimuthal angle ¢, or other quantum numbers
such as the particle’s charge or flavor. Section 2 contains additional mathematical details
regarding this decomposition.

With a suitable modification of eq. (1.1), we can restrict the decomposition to infrared-
and collinear-safe (IRC-safe) observables:



IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated
arbitrarily well as:

M
O({p1,..-,pu}) =F (Z Z@(ﬁz‘)) ; (1.2)

i=1
where z; is the energy (or pr) and p; the angular information of particle i.

The energy-weighting factors z; as well as the energy-independent p; in eq. (1.2) ensure
that the event representation in the latent space is IRC-safe.

In this paper, we show that many common observables are naturally encompassed by
simple choices of ® and F' from eqgs. (1.1) and (1.2). Furthermore, we can parametrize ®
and F' by neural network layers, capable of learning essentially any function, in order to
explore more complicated observables. In keeping with the naming convention of ref. [29]
for methods involving IRC-safe observables, we term a network architecture implementing
eq. (1.2) an Energy Flow Network (EFN). By contrast, we refer to the more general case
of an architecture that implements eq. (1.1) as a Particle Flow Network (PFN). These two
network architectures can be mathematically summarized as:

M M
EFN: F (Z zicb(ﬁi)> : PFN: F (Z cb(pz-)> : (1.3)
i=1 =1
Our framework manifestly respects the variable length and permutation invariance of par-
ticle sets, achieves performance competitive with existing techniques on key collider tasks,
and provides a platform for visualizing the information learned by the model. Beyond this,
we demonstrate how our framework unifies the existing event representations of calorimeter
images and radiation moments, and we showcase the extraction of novel analytic observ-
ables from the trained model.

One ever-present collider phenomenon that involves complicated multiparticle final
states is the formation and observation of jets, sprays of color-neutral hadrons resulting
from the fragmentation of high-energy quarks and gluons in quantum chromodynamics
(QCD). Numerous individual observables have been proposed to study jets including the
jet mass, constituent multiplicity, image activity [69], N-subjettiness [70, 71], track-based
observables [72, 73], generalized angularities [74], (generalized) energy correlation func-
tions [75, 76], soft drop multiplicity [77, 78], and many more (see refs. [54, 79-83] for re-
views). Machine learning methods have found tremendous applicability to jet classification
tasks, greatly outperforming individual standard observables. Jet classification provides
an ideal case study for the Deep Sets method in a collider setting since jets, like events,
are fundamentally variably sized and invariant under reorderings of their constituents.

Many existing collider observables ranging from e™e™ event shapes to jet substructure
observables naturally fit into the decomposition of eq. (1.1). Observables that are defined
directly in terms of the particles themselves (i.e. not algorithmically) can often be exactly
encompassed. Several examples of such observables are summarized in table 1, with the
associated functions ® and F listed for each observable. The fact that the decomposition
holds exactly in these familiar cases indicates that the Observable Decomposition indeed
captures an essential aspect of particle-level collider observables.



Observable O Map Function F'

Mass m pH F(at) = \/xFx,

Multiplicity M 1 F(z)==x

Track Mass Mirack | P*lirack F(at) = \/xFx,

Track Multiplicity Mirack | Tirack F(z)==x

Jet Charge [72] O (pr, Qp) F(z,y) =y/x"

Eventropy [74] zlnz | (pr,prlnpr) | F(z,y) =y/x —Inzx
Momentum Dispersion [93] p2 (pr.p3) F(z,y) = \/y/7

C' parameter [94] C (7], P2 p/lp]) | F(z,Y) = %[(TrY)2 —TrY?]

Table 1. A variety of common collider observables decomposed into per-particle maps ® and
functions F' according to eq. (1.1). Here Ii;ack is an indicator function over charged tracks. In the
last column, the arguments of F' are placeholders for the summed output of ®.

To showcase the efficacy of EFNs and PFNs, we apply them to the task of distinguishing
light-quark jets from gluon jets [84-87], finding that they achieve excellent classification
performance. In general, the PFN model outperforms the EFN model, indicating that
IRC-unsafe information is helpful for discriminating quark and gluon jets. Additionally,
including particle identification information improves the classification performance of the
PFN. It would be interesting to apply all of these methods in a fully-data driven way [88-90]
to test these conclusions beyond the limited scope of parton shower generators.

One fascinating aspect of EFNs is that they enable a natural visualization of the learned
latent space, providing insights as to what exactly the machine is learning. In particular,
since the function ® of an EFN typically takes the two-dimensional angular information
of a particle as input, this two-dimensional space is easily visualized. In the context of
quark/gluon discrimination, we observe that the EFN learns a latent representation that
“pixelates” the rapidity-azimuth plane, dynamically sizing the pixels to be smaller near the
core of the jet and larger farther out. We also find qualitative and quantitative evidence
that the EFN has in a sense “understood” the collinear singularity structure of QCD.

The rest of this paper is organized as follows. Section 2 provides a detailed mathe-
matical discussion of the observable decompositions and explores eqs. (1.1) and (1.2) in
the context of specific observables and event representations. Section 3 discusses the im-
plementation details of our EFN and PFN architectures, with other models discussed in
appendix A. Section 4 contains the case study discriminating quark- and gluon-initiated
jets and demonstrates our new techniques for visualizing and analyzing the learned infor-
mation. Conclusions are presented in section 5. A supplementary top jet tagging study is
presented in appendix B, and additional visualizations of the models are provided in ap-
pendix C. The EFN and PFN architectures are available online as part of our EnergyFlow
package [91] along with example code.
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2 A general framework for observables

Events consist of variable numbers of particles with no intrinsic ordering, so observables
are described mathematically as functions of sets of particles. Such a mathematical for-
mulation allows for a direct exploration of the space of observables. For instance, ref. [29]
exploited IRC safety to construct a linear approximating basis of all IRC-safe observables.
Here, we treat the entire space of observables (both with and without IRC safety), using
their mathematical structure to arrive at a general decomposition relevant for theoretically
categorizing observables as well as developing machine learning techniques.

2.1 Opbservables as functions of sets of particles

The key mathematical fact that we exploit, due to ref. [63], is that a generic function of
a set of objects can be decomposed to arbitrarily good approximation in a practical and
intuitive way. We state this result explicitly below:

Deep Sets Theorem [63]. Let X C R? be compact, X C 2% be the space of sets with
bounded cardinality of elements in X, and Y C R be a bounded interval. Consider a
continuous function f : X — Y that is invariant under permutations of its inputs, i.e.
f(x1,. o om) = f(Tr@)s - Trany) for all z; € X and m € Sy. Then there exists a
sufficiently large integer ¢ and continuous functions ® : X — R, F : RY =Y such that the

following holds to an arbitrarily good approzimation:*

M
fzr, ..., o)) =F (Z @(xi)> : (2.1)
=1

We only rely on the Deep Sets Theorem to justify the generality of eq. (2.1), which
can otherwise be regarded as an interesting, manifestly permutation-invariant parameteri-
zation.

The Deep Sets Theorem can be immediately applied to the collider physics context
where observables are viewed as functions of sets of particles. We denote an event with M
particles as {pi}f\il, where p; € R? contains the relevant attributes of particle i (momentum,
charge, flavor, etc.). Phrased in the collider physics language, it states that an observable
O can be approximated arbitrarily well as:

M
O{p1,....pu}) =F (Z cp(pi)> , (2.2)

where ® : R? — R is a per-particle mapping and F : R — Y is a continuous function. This
provides a mathematical justification for the Observable Decomposition stated in eq. (1.1).

The content of the Observable Decomposition is that any observable can be viewed
as linearly summing over the particles in some internal space and then mapping the result

Tt is formally necessary to restrict the domains and ranges of the functions to be compact because the
proof of the Deep Sets Theorem, given fully in ref. [63], makes use of the Stone-Weierstrass polynomial
approximation theorem [92], which applies for compact spaces. After the expansion in polynomials of the
features, the result follows by careful application of the fundamental theorem of symmetric polynomials.


谭为瀚
Highlight

谭为瀚
Text


to an output space. We refer to R as the latent space and each component of the per-
particle mapping ®(p;) as a filter. The latent space could be, for example, the pixel values
of a detector image or a moment decomposition of the radiation pattern. Summing ®(p;)
over the particles induces a latent description of the entire event, which is mapped by the
function F' to the value of the observable.

2.2 Enforcing infrared and collinear safety

We can formulate the Observable Decomposition specifically for a class of observables of
particular theoretical interest, namely IRC-safe observables [95-98]. IRC safety corre-
sponds to robustness of the observable under collinear splittings of a particle or additions
of soft particles, which makes the observable tractable in perturbative quantum field theory
as well as robust to experimental resolution effects.

Remarkably, building IRC safety into the latent representation simply corresponds to
energy-weighting the contributions of each particle and restricting ® to only depend on
the particle geometry p;. The energy-weighting z; and geometry p; for particle ¢ depends
on the collider context. At an ete™ collider, it is natural to take z; = E; and p; = pff /Ei,
where E; is the energy and p!' the four-momentum. At a hadron collider, it is natural to
take z; = pr; and p; = (yi, ¢;), where pr; is the transverse momentum, y; is the rapidity,
and ¢; the azimuthal angle.? In practice, we typically focus on dimensionless observables
and use the appropriate normalized weights: z; = E;/ > ;Ejor zi =pr; /> iPT

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

M
O ({pi}ily) = F <Z Zﬂ’(ﬁz‘)) ; (2.3)

where ® : R — R’ is a per-particle angular mapping and F : R® — R is continuous. All
observables of the form in eq. (2.3) are manifestly IRC safe due to the energy-weighted
linear sum structure, the dependence of ® on purely geometric inputs p;, and the fact that
continuous functions of IRC-safe observables are IRC safe.?

The fact that the energy-weighted decomposition in eq. (2.3) suffices to approximate
all IRC-safe observables is intuitive from the fact that a continuous function of a sufficiently
high-resolution calorimeter image can be used to approximate an IRC-safe observable ar-
bitrarily well [101-103]. As discussed in section 2.3, an image of the calorimeter deposits
is exactly encompassed by the energy-weighted observable decomposition.

Here, we provide a direct argument to arrive at eq. (2.3), building off the Deep Sets
Theorem and following similar logic as ref. [29]. Given the decomposition of an IRC-safe
observable O into F' and ® via eq. (2.2), the IRC safety of the observable O corresponds

2 As discussed in ref. [29], another sensible choice for the angular measure is p; = p! /pr;. Particle mass
information, if present, can be passed to a PFN via flavor information.

3Ratios of IRC-safe observables are not necessarily TRC safe [99, 100] since division is discontinuous at
zZero.



to the following statements:

M M
IR safety: F (Z @(zi,ﬁi)) =F (@(0,p0)+2q>(zi,ﬁi)> , (2.4)
=1 =1

M M
C safety: F (Z @(zi,m) =F (@(Azl,m)w((l—A)zl,ﬁ1>+2<1><zz~,ﬁi>> . (25)
i=1 1=2
where eq. (2.4) holds for all directions pg that a soft particle could be emitted and eq. (2.5)
holds for all energy fractions A € [0,1] of the collinear splitting. In eq. (2.5), we have
selected particle 1 to undergo the collinear splitting but the statement holds for any of the
particles by permutation symmetry. The equations here only hold to a specified accuracy
of approximation in the Observable Decomposition, which we leave implicit since it does
not alter the structure of our argument.
We now make the following suggestive redefinition of ® to ensure that the latent
representation of a particle vanishes if the particle has zero energy:

Infrared safety via eq. (2.4) ensures that the value of the observable is unchanged under
this redefinition, so without loss of generality we may take ® to vanish on arbitrarily soft
particles.

Making another convenient redefinition of ®, we choose a A € [0, 1] and let:

B(z,p) = D(Az,p) + B((1 — )z, p). (2.7)

Collinear safety via eq. (2.5) ensures that the value of the observable is unchanged under
such a redefinition, which holds for any A € [0, 1].

We now show that the freedom to redefine the mapping ® using egs. (2.6) and (2.7)
for an IRC-safe observable leads to the IRC-safe Observable Decomposition in eq. (2.3).
To see this, consider approximating ® in the energy argument z via the Stone-Weierstrass
theorem. Calling the angular coefficients of each term C),(p) yields:

ch Co(p) + 2z C1(p +ch (2.8)

for some large but finite /. How large A/ must be depends on the specified precision that
we have been leaving implicit.

Invoking the soft redefinition in eq. (2.6), ® may be taken to vanish on arbitrarily soft
particles, which allows Cy(p) to be set to zero without changing the value of the observable.
Implementing the collinear redefinition in eq. (2.7) after the expansion in energy, we obtain:

®(2,p) = zC1(p +Zx1 A)™)z2"Cr (D). (2.9)

From this equation, we seek to argue that C,(p) for n > 2 may be taken to vanish. For
A € (0,1), this redefinition decreases the higher-order coefficients Cy(p) by a factor of



A" 4+ (1 — A\)™ < 1 without changing the corresponding observable. Iterated application of
this fact allows the higher-order coefficients to be removed while keeping the term linear
in the energy. Thus, to an arbitrarily good approximation, we can take ®(z,p) = z C1(p)
for some angular function C(p), which we subsequently rename to ®(p).

To summarize, the Deep Sets Theorem, combined with IRC safety, shows that the map
® can be taken to be linear in energy without loss of generality. Collinear safety was critical
in arguing that ® could be taken to be affine linear in the energy and infrared safety was
critical in arguing that the constant piece could be set to zero without loss of generality.
This is exactly the result needed to justify the IRC-safe Observable Decomposition in
eq. (2.3), thereby completing the argument. Beyond potential applications for building IRC
safety directly into models, such an observable decomposition for IRC-safe observables may
be useful for shedding light on the structure of these important observables more broadly.

2.3 Encompassing image and moment representations

Beyond the single observables tabulated in table 1, entire event representations can be
encompassed in the Observable Decomposition framework as well.

One common event representation is to view events as images by treating the energy
deposits in a calorimeter as pixel intensities [4-9]. Since typical pixelizations for jet classi-
fication are 33 x 33 ~ 1000, the images are quite sparse, with an order of magnitude more
pixels than particles. Treating the detector as a camera and events as images allows for
modern image recognition technology to be applied to collider physics problems. These
images are typically fed into a convolutional neural network, which is trained to learn a
function of the images optimized for a specific task.

The image-based event representation of a jet as a collection of pixels fits naturally
into the Observable Decomposition. The energy (or transverse momentum) deposited in
each pixel is simply a sum over the energies z; of the particles hitting that pixel. Letting
I; x(y, ¢) be an indicator function of pixel (j, k) in the rapidity-azimuth plane, we have that

J
the intensity P;j, of pixel (j, k) is:

Pir=> 2Ly di) (2.10)
(2
Thus, having ® be an indicator function for the location of the pixel directly allows the
latent representation of the IRC-safe Observable Decomposition to be a detector image.
We illustrate this in figure 2 for the rapidity-azimuth plane relevant for a hadron collider.
Here, the filters are a collection of localized square bumps evenly spaced throughout the
rapidity-azimuth plane.

Another way to represent an event or jet is as a collection of moments of its radiation
pattern. Moments (or tensors) have been considered for analyzing hadronic energy flow
patterns both for ete™ and hadron colliders [104-106]. A moment-based representation
has yet to be directly exploited for machine learning applications in collider physics, though
is closely related to the EFPs [29].% Here we restrict to the collimated case of jets, but a

4There is a rich connection between the moments of the event radiation pattern and multiparticle energy
correlators, a detailed discussion of which we leave to future work. See footnote 8 of ref. [29].
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Figure 2. The calorimeter image representation decomposed into a collection of ®(y, ¢) filters
according to the IRC-safe Observable Decomposition, shown here for the illustrative case of a 4 x 4
image. The energy deposits in each pixel can be decomposed via eq. (1.2) into an indicator function
®(y, ¢) determining whether a particle in position (y, ¢) hits the pixel.

similar discussion holds at the event level. The moments I, ,, of the radiation pattern in
the rapidity-azimuth plane are:

I = > 24" 9} (2.11)
A

This can be manifestly decomposed according to the IRC-safe Observable Decomposition
by simply making each filter ®(y, ¢) = y™¢", as illustrated in figure 3. Here, the filters are
a collection of non-localized functions which weight different parts of the event differently.

More generally, we can visualize ®(y,¢) for learned IRC-safe latent spaces, where
the model itself learns its own event representation. In interpreting these visualizations,
it is worth keeping in mind that localized filters like figure 2 correspond to an image-like
representation, while global filters like figure 3 correspond to a moment-like representation.
The flexibility of the IRC-safe Observable Decomposition allows for more complicated filters
as well. As we will see in section 4.4, visualizing the latent space is extremely useful
in understanding the behavior of EFNs. Moreover, similar (albeit higher-dimensional)
visualizations can be performed in the general PFN case of ®(p) and have been explored
in the point cloud context [60].
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Figure 3. The radiation moment representation decomposed into a collection of ®(y, ¢) filters
according to the IRC-safe Observable Decomposition. The (m, n) moment of the energy distribution
in the rapidity-azimuth plane can be decomposed via eq. (1.2) into ®(y,¢) = y"™¢", shown here
with increasing m downward and increasing n to the right.

3 Network implementation

In this section, we describe our implementation and adaptation of the Deep Sets decompo-
sition for use in a particle physics context. In light of the quark versus gluon jet case study
presented in section 4, we focus here on inputting individual jets to the model, though we
emphasize that the method is broadly applicable at the event level.

3.1 Preprocessing

The goal of preprocessing inputs is to assist the model in its effort to solve an optimization
problem. Typically, preprocessing steps are optional, but are applied in order to improve
the numerical convergence of the model, given the practical limitations of finite dataset and
model size, as well as the particular choice of parameter initialization. The preprocessing
described in this section was found to be helpful, and sometimes necessary, for achieving
a well-trained EFN or PFN model for the applications considered in section 4. It is likely
that for further applications of EFNs or PFNs, such as event-level studies, the appropriate
preprocessing steps may change.

For the models we construct, kinematic information — transverse momentum pr,
rapidity y, and azimuthal angle ¢ — are always given for each particle. We preprocess
these features as follows: the transverse momenta are divided by the total scalar sum prp
and the rapidities and azimuthal angles are centered based on the rapidity and azimuthal
angle of the jet, using the E-scheme jet axis. In terms of the four-momentum of each

- 11 -



particle, this preprocessing step can be cast into the following suggestive form:

Pri N «
Pri = ﬁv vi—yi— | D pribi |, i di— | D pribi | (3.1)
g i j
Y ¢

with p; = p!'/pr,i, where the subscripts indicate the rapidity and azimuth of the jet four-
vector. This notation makes clear that the per-particle preprocessing of eq. (3.1) solely relies
on the scalar sum pp, rapidity, and azimuth of the jet, which itself can be written in terms
of an IRC-safe Observable Decomposition with ®(p) = (1,p). Alternative jet centerings,
such as those based on the pp-weighted centroid, also fit nicely into this framework.”

Optionally, the inputs may also include particle identification (ID) information.
Though typically encoded using the Particle Data Group (PDG) particle numbering
scheme [107], the large and irregular integer values employed therein are not ideal in-
puts to a model expecting inputs roughly in the numerical range [—1,1]. Therefore, a
mapping from PDG IDs to small floats is performed for each particle (the details of which
are provided below). While this approach, which only uses a single feature to encode the
particle ID information, should be sufficient to input this information to the model, al-
ternative approaches using multiple categorical features may be easier for the model to
interpret, since particle ID is inherently discrete rather than continuous. For instance,
using two additional features per particle, one feature could indicate the charge of the
particle {—1,0,+1} and the other one could indicate {h,~,e, u} (where h corresponds
to a hadron, one of 7, K, n, p), covering an experimentally realistic particle ID scheme.
One-hot encoding of the particle ID is another option.

In order to explore how particle identification is helpful to a model,® we use it in four
different ways, each with a PFN architecture. We describe each of the different models and
levels of information used throughout section 4 below:

e PFN-ID: PFN, adding in the full particle ID information. For the case study in
section 4, particles are indicated as being one of v, 7+, 7=, K+, K—, K1, n, i, p, D,
e, e’, u~, uT, which are represented to the model as a single float value starting at
0 and increasing by 0.1 for each distinct type, respectively.”

e PFN-Ex: PFN, adding in experimentally realistic particle ID information. For the
case study in section 4, particles are indicated as being one of ~, ht, h=, h¥, e~ e,
p~, ut, which are represented to the model analogously to the PFN-ID case.®

5These observations motivate an iterative local-global architecture which learns an event representa-
tion, applies it per-particle, and repeats. Such an architecture could explicitly or learnably fold in this
preprocessing as a first step. We leave further developments in this direction to future work.

SWe perform this comparison at particle level without detector simulation. Detector effects may change
or degrade the information available in the different particle types. Doing such an exploration with detector
simulation (or in data) is an interesting avenue for additional exploration.

"Note that 7° is absent since we include its decay, usually into two photons.

8These categories are based on particle flow reconstruction algorithms at ATLAS and CMS [1-3], where
ht = 7t /K*/p/p and h® = K /n/A. Additional experimental information, such as 7/K/p separation,
feasible at ALICE and LHCb (or at ATLAS and CMS at low pr), can carry added information, as could
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e PFN-Ch: PFN, adding in the electric charge of the particles as an additional feature.
e PFN: the particle flow network using only three-momentum information via eq. (1.1).

e EFN: the energy flow network using only IRC-safe latent space information via
eq. (1.2).

3.2 Network architecture

So far, there has not yet been any machine learning in our effort to apply the decompositions
in egs. (1.1) and (1.2) to collider data. The machine learning enters by choosing to approxi-
mate the functions ® and F with neural networks.? Neural networks are a natural choice to
use because sufficiently large neural networks can approximate any well-behaved function.
To parametrize the functions ® and F' in a sufficiently general way, we use several dense
neural network layers as universal approximators, as shown in figure 4. For ®, we employ
three dense layers with 100, 100, and ¢ nodes, respectively, where £ is the latent dimension
that will be varied in powers of 2 up to 256. For F', we use three dense layers, each with 100
nodes. We confirmed that several network architectures with more or fewer layers and nodes
achieved similar performance. Each dense layer uses the ReLU activation function [108] and
He-uniform parameter initialization [109]. A two-unit layer with a softmax activation func-
tion is used as the output layer of the classifier. See appendix A for additional details regard-
ing the implementations of the EFN, PFN, and other networks. The EnergyFlow Python
package [91] contains implementations and examples of EFN and PFN architectures.

4 Discriminating quark and gluon jets

To demonstrate the EFN architecture in a realistic setting, we implement and train an
EFN and several PFN variants to discriminate light-quark from gluon initiated jets [84—
87], a problem relevant for new physics searches as well as precision measurements. See
appendix B for a similar study on classifying top jets from QCD jets using samples based
on ref. [22].

4.1 Event generation

The samples used for this study were Z(— vv)+g and Z(— vv)+(u, d, s) events generated
with PYTHIA 8.226 [110, 111] at /s = 14 TeV using the WeakBosonAndParton:qqgbar2gmZg
and WeakBosonAndParton:qg2gmZq processes, ignoring the photon contribution and requir-
ing the Z to decay invisibly to neutrinos. Hadronization and multiple parton interactions
(i.e. underlying event) were turned on and the default tunings and shower parameters were

exclusive hadron reconstruction. Particle ID information is typically captured in likelihood ratios for dif-
ferent particle hypotheses, which fits naturally into a categorical encoding scheme where there is a feature
for each particle-type likelihood ratio.

9Ref. [63] describes two types of architectures in the Deep Sets framework, termed invariant and equiv-
ariant. Equivariance corresponds to producing per-particle outputs that respect permutation symmetry.
For this paper, our interest is in the invariant case, but we leave for future work an exploration of the
potential particle physics applications of an equivariant architecture.
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Figure 4. The particular dense networks used here to parametrize (a) the per-particle mapping
® and (b) the function F, shown for the case of a latent space of dimension ¢ = 8. For the
EFN, the latent observable is Oq = ). z; ®4(y;, ¢;). For the PFN family, the latent observable is
O4 =3, Palyi, di, zi, PID;), with different levels of particle-ID (PID) information. The output of
F is a softmaxed signal (S) versus background (B) discriminant.

used. Final state non-neutrino particles were clustered into R = 0.4 anti-kr jets [112] using
FASTJET 3.3.0 [113]. Jets with pr € [500,550] GeV and |y| < 2.0 were kept. No detector
simulation was performed.!” While labeling these jets using quark/gluon parton labels is
manifestly unphysical, applications of these techniques at colliders could rely on an oper-
ational jet flavor definition [90] and weak supervision techniques for training directly on
data [88, 89] (see also refs. [114-117]).

4.2 Classification performance

A standard tool to analyze a classifier is the receiver operating characteristic (ROC) curve,
obtained from the true positive €5 and false positive ¢, rates as the decision threshold is
varied. This may also be plotted as a Significance Improvement (SI) curve [85], namely
€s/+/Ep as a function of £,. To condense the performance of a classifier into a single quantity,
the area under the ROC curve (AUC) is commonly used, which is also the probability that
the classifier correctly sorts randomly drawn signal (quark jet) and background (gluon jet)
samples. An AUC of 0.5 corresponds to a random classifier and an AUC of 1.0 corresponds
to a perfect classifier. We also report the background rejection at 50% signal efficiency
(1/ep at 5 = 50%) as an alternative performance metric.

For each of the models, we sweep the latent dimension ¢ of the internal representation
from 2 to 256 in powers of 2. As discussed in section 3.1, four PFN models were trained

10T the context of experimental applications, it is worth noting that the different resolutions of different
particle types can be naturally accomodated in our framework.
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Figure 5. The AUC performance of the EFN and PFN models as a function of the latent dimension
of the model, which is varied from 2 to 256 in powers of 2. The spread in values is due to training
the model ten times with different initializations. The performance generally increases with larger
latent dimensions, with saturation observed by latent dimension 256. The best model is PFN-ID,
which uses full particle-type information, followed closely by PFN-Ex, which uses experimentally
realistic particle-type information. The PFN without any extra information performs roughly the
same as the PFN-Ch, which uses charge information. The fact that the EFN is lowest on this plot
indicates that there is discrimination power to be found in IRC-unsafe information.

each with different particle-type information. Models are trained ten times each to give a
sense of the variation and stability of the training. The resulting model performances as
quantified by the AUC are shown in figure 5. As anticipated, the performance of each model
increases as the latent dimension increases, with good performance achieved by ¢ = 16.
The higher variance at low latent dimensions arises because some of the filters fail to train
to non-zero values in those cases. The performance of the models appears to saturate by
the larger latent dimensions, which justifies our use of ¢ = 256 as our benchmark latent
dimension size for additional explorations.

In figure 6, we show the full ROC and SI curves of these models with latent dimension
256. The best model performance of all tested techniques and models was the PFN-ID with
full particle ID, followed closely by the PFN-Ex with experimentally realistic particle ID.
Figures 5 and 6 show a well-defined hierarchy of model performances at all latent dimension
sizes based on the information available to the model. The fact that the PFNs outperform
the EFN indicates that IRC-unsafe information is helpful for discrimination, which is not
surprising in light of the fact that the constituent multiplicity is IRC unsafe and is known
to be a good quark/gluon discriminant [85]. Though IRC-unsafe information is helpful, it
is instructive to test both EFNs and PFNs to probe how different kinds of information are
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Figure 6. The (a) ROC and (b) SI curves of the median (selected by AUC) EFN and PFN
models with latent dimensions of 256. The linear EFP model is shown for comparison. The PFN-
ID with full particle ID yields the best performance of all models, followed by the PFN-Ex using
experimentally realistic particle ID. The EFN and EFP models perform comparably in terms of
maximum SI, indicating that the available IRC-safe information is being captured consistently by
these very different architectures.

used by the classifier. Furthermore, sometimes an IRC-safe model is desired as it may be
more robust to detector effects or mismodeling of infrared physics such as hadronization
in simulated training data.

4.3 Comparison to other architectures

Besides comparing the EFN and PFN architectures to each other, we also compare the
£ = 256 models to a variety of other classifiers, summarized in table 2 and described in
more detail in appendix A.

Of particular interest are the RNN-ID and RNN models, which also take particles as
input (with and without full particle ID, respectively), but process them in a way which is
dependent on the order the particles were fed into the network (decreasing pr ordering was
used). In figure 7, ROC and SI curves are shown for the RNN-ID and RNN architectures,
as well as their natural counterparts, PFN-ID and PFN. We see that PFN-ID slightly
outperforms RNN-ID whereas the PFN and RNN are comparable, though we emphasize
that making broad conclusions based on this one result is difficult given the variety of
different RNN architectures we could have chosen. Since PFNs are less expressive than
RNNs, which can learn order-dependent functions, it is satisfying that both the PFN and
RNN architectures achieve comparable classification performance with similar information.

The other machine learning architectures we compare to are a DNN trained on the
N-subjettiness basis [24, 70, 71], a CNN trained on jet images [4, 5, 8], and a linear
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Symbol

Name

Short Description

PEN-ID | Particle Flow Network w. ID PFEFN with full particle ID
PFN-Ex | Particle Flow Network w. PF ID | PFN with realistic particle ID
PFEFN-Ch | Particle Flow Network w. charge | PFN with charge information
PFN Particle Flow Network Using three-momentum information
EFN Energy Flow Network Using IRC-safe information
RNN-ID | Recurrent Neural Network w. ID | RNN with full particle ID
RNN Recurrent Neural Network Using three-momentum information
EFP Energy Flow Polynomials A linear basis for IRC-safe information
DNN Dense Neural Network Trained on an N-subjettiness basis
CNN Convolutional Neural Network Trained on 33 x 33 grayscale jet images
M Constituent Multiplicity Number of particles in the jet
nsD Soft Drop Multiplicity Probes number of perturbative emissions
m Jet Mass Mass of the jet

Table 2. The (top) PEN/EFN architectures, (middle) other machine learning models, and (bot-
tom) jet substructure observables used in comparisons of quark/gluon discrimination performance,
along with their corresponding symbols and short descriptions. A detailed discussion of model
implementation and observable computation is given in appendix A.
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Figure 7. The (a) ROC and (b) SI curve classification performances of PFN and RNN models
both with and without full particle ID information. From the SI curve, it appears that the PFN-ID
model is doing better than the RNN-ID model, whereas the PFN and RNN models perform roughly
equally.
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Model AUC 1/e4 at e = 50%
PFN-ID | 0.9052 4+ 0.0007 37.4+0.7
PFN-Ex | 0.9005 £ 0.0003 34.7+£04
PEFN-Ch | 0.8924 4+ 0.0001 31.2+£0.3
PFN 0.8911 £ 0.0008 30.8£0.4
EFN 0.8824 £ 0.0005 28.6 £0.3
RNN-ID 0.9010 34.4
RNN 0.8899 30.5
EFP 0.8919 29.7
DNN 0.8849 26.4
CNN 0.8781 25.5
M 0.8401 19.0
nsp 0.8297 14.2
m 0.7401 7.2

Table 3. The classification performances, quantified by the AUC and background rejection at 50%
signal efficiency, for each of the models and observables in table 2. Reported uncertainties on the
EFN and PFN family of models are half of the interquartile range over ten trainings. Performance
uniformly improves with the inclusion of more particle-type information.
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Figure 8. The (a) ROC and (b) SI curve classification performances of several different models
and observables. The PFN-ID and RNN-ID curves are shown in order to facilitate comparison
with figures 6 and 7. The PFN-ID architecture compares well to existing techniques, often notably
outperforming them.
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classifier trained on the energy flow basis [29]. Their performance, as given by their AUC
and background rejection at 50% signal efficiency, is summarized in table 3. Classification
improves with the addition of IRC-unsafe information, as seen in the gain that the various
PFN and RNN models have over the EFN and EFP models. There is also a boost in
performance from providing the model with ever-more specific particle-type information.

Figure 8 shows ROC and SI curves for all of these models, as well as some common jet
substructure observables. The best model is PFN-ID, followed by RNN-ID, and then (as
shown in this figure) linear EFPs, which, somewhat remarkably, is the best architecture
by AUC and SI curve height that does not take particles as direct inputs. We note that
for the CNN, one can in principle include particle ID information via additional channels,
though training a 14-channel CNN is computationally challenging as each channel comes
with O(1000) additional numbers, most of which are zero. Similar to RNNs and CNNs,
the EFN and PFN architectures endeavor to be efficient by reducing the number of train-
able parameters using weight sharing by applying the same ® network to each particle.
Adding particle-type information to the EFPs or the N-subjettiness DNNs might be pos-
sible through a suitable generalization of jet charge [72], though we know of no concrete
implementation of this in the literature. The fact that PFNs naturally incorporate particle
ID information is a important aspect of this architecture.

4.4 Visualizing the singularity structure of QCD

Beyond their excellent classification performance, the EFN and PFN architectures have
the additional benefit that the learned function ® can be directly explored. As discussed in
section 2.3, this is particularly true of the EFNs, where ®(p) is a two-dimensional function
of the angular information and thus can be directly visualized in the rapidity-azimuth plane.

We take the learned ® : R? — R network from the best EFN model, as determined by
the AUC, and evaluate it at many rapidity-azimuth points (y, ¢) in the range y, ¢ € [—R, R|
to form a set of ¢ filters representing the learned latent space. We show several of these
filters from the ¢ = 256 EFN models in figure 9. These can be directly compared with the
corresponding filters for the detector image representation in figure 2 and for the radiation
moment representation in figure 3. Like the image representation, we see that the learned
filters are localized bumps in the rapidity-azimuth plane, and thus we say that the model
appears to have learned a “pixelization” of the rapidity-azimuth plane.'' Unlike the image
representation, the “pixels” learned by the model are smaller near the core of the jet and
larger near the edge of the jet.

Beyond showing individual filters, it is informative to attempt to visualize an entire
EFN latent space at once. We achieve this by finding the boundary of each of the learned
pixels (corresponding to one component of ®) and showing these boundaries together.
Plotting the boundary contours simultaneously allows for a direct visualization of the latent
space representation learned by the model on a single figure. In this way, we arrive at a
proxy for the “image” that the model projects each jet into, which empirically emerges as
a dynamically-sized calorimeter image. Larger latent space dimensions correspond roughly

" Note that the ReLU activation function that we used in the model forces the filter values to be positive
and allows the model to easily turn off regions of the inputs. Different activation functions may result in
different learned latent representations.
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Figure 9. Visualizations of 16 of the 256 filters learned by the ¢ = 256 EFN, with the filters sorted
by their activated area. The domain is the rapidity-azimuth plane from —R to R in both y and
¢, since the jets have been preprocessed by centering them at (0,0). The localized nature of the
filters leads to our interpretation that the model has learned an image-like “pixelization” of the
rapidity-azimuth plane, albeit one that is not square as in figure 2.
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Figure 10. An illustration of our simultaneous visualization procedure for example EFN filters.
Contours of each filter are shown from 45% to 55% of its maximum value. These contours are then
overlaid on the same figure with different colors. The resulting contour plot shows the dynamical
pixelization of the plane determined by the model.

to higher resolution images. This strategy is illustrated in figure 10, where each filter is
contoured around its 50% value and the contours are overlaid.

In figure 11, we show this visualization for EFN models with latent dimension varying
from 8 to 256 in powers of 2. Some of the filters are zero in the region of interest, perhaps as
a result of dying ReLLUs, so these are not shown. It is evident from the simultaneous overlay
of the filters that their sizes are correlated with their distance from the origin, which is es-
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Figure 11. The learned EFN pixelization of the rapidity-azimuth plane around the jet center with
latent dimensions between 8 and 256 in powers of 2. The learned filters are dynamically sized, with
smaller filters probing the core of the jet and larger filters in the periphery. A large version of the
last panel is shown in figure 21.
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Figure 12. The size of the EFN filters as a function of their distance from the origin. The tendency
of small filters to be located near the core of the jet and larger ones to be farther out is clearly
visible. The best fit slope is around 2, which is the scale-invariant expectation from eq. (4.2).
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pecially clear for the larger latent dimensions. As quark and gluon jets are (approximately)
fractal objects with radiation singularly enhanced near the core of the jet as a result of
the collinear singularity of QCD, the dynamically-sized pixelization learned by the EFN
suggests that the model, in a sense, has understood this fact and adjusted itself accordingly.

To quantify the tendency of the filters to change size as they approach the center of
the jet, we plot the area of each filter as a function of its distance from the origin. To
define the area of a filter, A, we integrate the region of the rapidity-azimuth for which the
filter is greater than or equal to half of its maximum. To capture a notion of distance from
the origin, 0, we take the distance from the origin to the maximum value of the filter. We
exclude filters that have centers outside of the jet radius. The resulting plots of the filters
in this space are shown in figure 12 for the models with latent space dimension from 8 to
256 in powers of 2. There is a clear linear relationship between the (log) pixel size and the
(log) distance to the jet core. In particular, the slope between In A and In# is around 1.6
in the cases studied.

We can attempt to understand why the slopes in figure 12 are around 2 by considering
a uniform pixelization in (In %, ©), where 6 is the distance from the jet axis and ¢ is the
azimuthal angle around the jet axis (not to be confused with ¢). As discussed in ref. [14],
this is the natural emission space of the jet. Translating an area element from this natural
emission space to the rapidity-azimuth (y, ¢) plane yields:

de 9dod
dlancp' =5 dp="7 L

02 dy deo. 4.1
5 7 ydo (4.1)

Thus, a uniform pixelization in (In %, ) yields the following relationship between the area
element (or pixel) size in the rapidity-azimuth plane and its distance from the origin:

A 6
In i 2In i + const, (4.2)

explaining the slopes around 2 observed empirically in figure 12. This emergent behavior
suggests an interesting connection with recent work on machine learning directly in the
emission space of the jet [14]. Deviations from the scale-invariant expectation of 2 are
largest near the core of the jet, where non-perturbative physics or axis-recoil effects [118]
become important. The emission plane is visualized directly in appendix C, where the
pixelization is indeed seen to be highly uniform and regular in that space.

4.5 Extracting new observables from the model

Given that we are able to examine ® for a trained EFN by visualizing its components, we
can attempt to go further and obtain a quantitative description of both ® and F as closed-
form observables. Obtaining novel jet substructure observables from machine learning
methods has been approached previously by parameterizing an observable and learning
the optimal parameters for a particular task [28]. Here, we go in a different direction and
look directly at the latent observables learned by an EFN. This represents a first, concrete
step towards gaining a full analytic understanding what is being learned by the model.
To make this tractable, we focus on the simple case of a two-dimensional latent space.
A trained ¢ = 2 EFN has two learned filters, ®;(y, ¢) and ®2(y, ¢), and a learned function
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Figure 13. (a, b) The two filters learned by an £ = 2 EFN, normalized to have a maximum value
of 1. The rotational symmetry of the filters about the jet axis is evident, with one filter probing
radiation near the core of the jet and the other probing wide-angle radiation. (c¢) Radial behavior of
the two filters, from the center of the jet along the vertical and horizontal directions. The analytic
forms of eq. (4.4) are shown as black lines, with B,, g scaled by 0.15.

F(O1,09). The filters can be visualized in the rapidity-azimuth plane and the function F'
can be viewed in the (O;,03) phase space. By studying these visualizations and noting
their emergent properties, we can construct observables that reproduce the behavior and
predictive power of the trained EFN.
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Figure 14. (a) The EFN model output F(O;, Os) in the plane spanned by the learned latent space
observables O; and Os. (b) The closed-form function C(A, B) in the plane of the analytic observ-
ables A,, and By, g. One hundred quark jets (light blue circles) and gluon jets (dark red squares)
are indicated to highlight the separation power. The distribution of the closed-form observables
and output value faithfully reproduce those of the trained EFN.
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Figure 15. The (a) ROC and (b) SI curves for the two closed-form observables A, and B, g as
well as their combination C(A, B), compared to the trained ¢ = 2 EFN model. Three angularities
are also shown for comparison, along with their corresponding performance when combined with
a BDT. While the two learned observables perform similarly to the angularities on an individual
basis, they are evidently more informative than the angularities when combined. The output of the
trained EFN model and the closed-form estimate achieve similar performance.
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In figures 13a and 13b, we show the learned filters ®; and ®5 of a trained ¢ = 2 EFN.
It is evident that the filters exhibit approximate radial symmetry, with one of the filters
concentrated at the center of the jet and the other activated at larger angular distances.
Thus, we can restrict our attention to functional forms which depend only on the rapidity-
azimuth distance 6 from the origin. In particular, due to its built-in IRC-safety, the EFN
model has learned filters that correspond to observables of the following approximate form:

M M
01 = Z Z CI)l(QZ-), 02 = Z Z @2(9i>. (4.3)
=1 =1

These are of the general form of IRC-safe angularities [74] with a generic radially-symmetric
angular weighting function [85].'2 To quantify the filters further, in figure 13c we plot the
value of the learned filters as a function of the radial distance, taking an envelope over
several radial slices. The complementary central and wide-angle nature of the two filters
are clearly evident.

By observing the properties of the curves in figure 13c, we fit two IRC-safe observables
to the learned profiles of the following forms:

A= Y e By = Y A OO0 ), (4)

with values of rg = 0.018, 5 = 200, and r1 = 0.015 found to be suitable. The observables
in eq. (4.4) are then multiplied by overall factors of 0.60 and 0.18, respectively, to match
the arbitrary normalization of the learned filters. While the precise values and shapes of
the observable profiles changed from training to training, these general forms emerged for
several of the best-performing models.

The observables A, and B,, 5 in eq. (4.4) are IRC-safe angularities with a linear energy
dependence and interesting angular weighting functions. A,, probes the collinear radiation
near the core of the jet at angles 6 < rp, and B,, g probes wide-angle radiation away from
the core of the jet at angles 6 > r1. The separate treatment of collinear and wide-angle par-
ticles is unlike the behavior of the traditional angularities, which have explicit contributions
from both collinear and wide-angle regions of phase space. Though, as will be shown, each
is individually a comparable quark/gluon jet c