μ RWELL R&D plans for 2021

Riccardo Farinelli On Behalf of µRWELL R&D group

INFN BO, FE, LNF, TO

IDEA detector is a general purpose detector designed for experiments at future e+e- colliders (FCCee CepC).

Preshower and the Muon Systems are designed with the uRWELL technology

IDEA pre-shower detector dimensions

- IDEA's Pre-Shower detector would have in total:
- ~ 225 m2 total
- ~ 1.5 M channel in total

Tiles: 50x50 cm² with X-Y readout Strip Length: 50 cm Strip pitch: 0.4 mm Input FEE capacity (Cap_{inp})~70 pF

IDEA Muon detector dimensions

Barrel

Endcap

Layer	R [mm]	Length [mm]	Thickness [mm]	int. length	pixel size [mm]	area [cm ²]	# of channels
µRwell	4520	±4500	20		1.5×500	2.6M	341K
iron	4560	±4500	300	1.5			4. 17
µRwell	4880	±4500	20		1.5×500	2.8M	368K
iron	4920	±4500	300	1.5			
µRwell	5240	±5260	20		1.5×500	3.5M	462K

of Thickness int. Rin Rout pixel size area Z Disk [mm] [mm] [mm] [mm] length [mm] [cm²] channels µRwell 454 5220 ±4520 20 1.5×500 1.7M 227K 454 5220 ±4560 300 1.5 iron 20 1.5×500 1.7M 227K µRwell 454 5220 ±4880 454 5220 ±4920 300 1.5 iron µRwell 454 5220 ±5240 20 1.5×500 1.7M 227K

Tiles: 50x50 cm² with X-Y readout Strip Length: 50 cm Strip pitch: 1.5 mm Input FEE capacity (Cap_{inp}) ~270 pF IDEA's Muon detector would have in total:

- ~ 2800 m2 total
- ~ 4M channels in total
- ~ 3 stations

The 2020 program was centered mainly on the following activities:

- construction at ELTOS/CERN of large size μRWELLs (Technology Transfer)
- 2. design, construction and characterisation of a cylindrical μ RWELL (CREMLIN-plus started on 01/02/2020)
- 3. design, construction and characterisation of $\mu RWELL$ to detect thermal neutrons (ATTRACT uRANIA)

The 2021 program is centered mainly on the following activities:

- 1. test of large size μ **RWELLs** with TIGER-GEMROC readout
- 2. optimization studies on DLC resistivity and pitch size for the IDEA preshower and muon chamber (**AIDAinnova**)

Large area µRWELL with TIGER readout

Size: 606.5 x 498.5 x 1 mm Active area: 559.6 - 480 (w) x 450 (h) mm 373 radial strips strip pitch 1.29 - 1.5 mm strip length ~ 22 cm

Dimensions in mm

- \bullet Build a large $\mu RWELL$ detector and equip it with a Tiger-based readout
 - \bullet Would be a very valid test of an IDEA-dimension $\mu RWELL$ detector equipped with a custom-made ASIC
 - The TIGER chip was developed by TO and FE for GEM detectors in the frame of BESIII
- We could then test the M4 with the Tiger with the large cosmic rays telescope (Bologna), with sources (Ferrara) and with a X-ray gun (LNF) before bringing the whole setup onto a test beam sometime in 2021
- In parallel perform simulation studies, with special emphasis on Long Lived Particles, to justify the interest of having a performing tracker in the muon detection system rather than a simple tagger and optimise the detector consequently.
 - This task is foreseen by the IDEA group and will receive special consideration.

Example: Charge dispersion in a GEM- TPC with a resistive anode

Modified GEM anode with a high resistivity film bonded to a readout plane with an insulating spacer

Resistive layer increase charge distribution increasing MPGD TPC space resolution

Space resolution with u-RWELL: orthogonal tracks

Centroid analisys

The use of **low resistivity increases the charge spread** (cluster size) on the readout strips and then σ is **worsening**.

At high resistivity the charge spread is too small (CI_size \rightarrow 1) then the Charge Centroid method becomes no more effective ($\sigma \rightarrow pitch/\sqrt{12}$).

Built and test 10 µRWELL detectors low-rate configuration with active are of 50x16 cm²

N.5 μ RWELL for the Pre-shower Strip pitch 0.4 mm, strip length 50 cm (C_{inp}~70 pF)

N.5 for the Muon detector
Strip pitch 1 mm, strip length 50 cm (C_{inp}~180 pF)

The proposal measures the charge distribution for 5 resistivity on the DLC 10-20-50-100-200 MOhm/square.

Hardware and software simulations will test different pitch sizes: i.e. 0.4-0.8-1.2 mm for the pre-shower configuration and 1-2-3 mm for the muon chamber configurations.

The characterization of these configurations will be performed with a test beam with APV electronics at SPS-CERN

2022-2024 program on µRWELL

- \bullet Define the best resistivity of the DLC for both μRWELL fundamental tiles
 - Build 50x50 cm² prototypes for preshower and muon system
 - Both prototypes with **bi-dimensional** readout
 - \bullet Develop a custom-made ASIC for the $\mu RWELLs,$ with the experience obtained from the TIGER
 - Optimise the engineering mass construction process together with industry (Eltos)
 - \bullet Test and validate μRWELL prototypes in the lab with cosmic rays
 - \bullet Test and validate $\mu RWELL$ prototypes with custom-made electronics in test beams
- Develop a new reconstruction algorithm, ML-based, to improve the resolution for tracks impinging at an angle far from 90⁰

Several of the points above are already contained in AIDAinnova

- AIDAinnova will mostly provide contracts for young collaborators
- Assume that CSN1 will cover material and equipment costs

