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Machine learning for High Energy Physics
● One of the major objectives of the experimental programs at the 

LHC is the discovery of new physics.
● Machine Learning: “application of artificial intelligence that 

provides systems the ability to automatically learn and improve 
from experience without being explicitly programmed”
○ It has become one of the most popular and powerful techniques 

and tools for High Energy Physics (HEP) data analysis
○ It greatly enhances our ability to identify rare signal against 

immense backgrounds: important for discovery of new physics
● Issues raised by machine learning

○ Heavy CPU time is needed to train complex models
■ The training time increases with more data

○ May lead to local optimization, instead of global optimization
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Machine learning for High Energy Physics
● Classical Machine learning algorithms commonly used in High 

Energy Physics data analysis
○ Boosted Decision Tree (BDT): an algorithm that incrementally builds 

an ensemble of decision trees and combines all the decision trees to 
form a strong classifier. (A decision tree is a tree-like structure in 
which each internal node represents a "test" on a variable and each 
leaf node represents a class label)

○ Support Vector Machine (SVM): it maps the input vectors x into a 
high-dimensional feature space Z through some nonlinear mapping. 
In this space, an optimal separating hyperplane is constructed to 
separate signal from background. 

○ Neural Network (NN): a computing system made up of a number of 
simple, highly interconnected processing elements, which process 
information by their response to external inputs. 
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Quantum Machine learning  

● Quantum computing
○ Perform computation using the quantum state of qubits
○ A way of parallel execution of multiple processes 
○ Can speed up certain types of problems effectively

● Quantum machine learning
○ Intersection between machine learning and quantum computing
○ May lead to more powerful solutions and offer a computational 

“speed up”, by exploiting the high dimensional quantum state 
space through the action of superposition, entanglement, etc

○ Quantum machine learning could possibly become a valuable 
alternative to classical machine learning for HEP data analysis
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Maria Schuld  arXiv:2101.11020 

Quantum Machine learning  
● Quantum machine learning algorithms encode input data 

to a quantum state, “process” (transform) the quantum 
state, and access the quantum state via measurements

https://arxiv.org/abs/2101.11020
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Our program with Quantum Machine Learning

Our present program is to employ the following 3 
quantum machine learning methods
     1. Variational Quantum Classifier Method

2. Quantum Support Vector Machine Kernel Method
3. Quantum Neural Network Method 

to LHC High Energy Physics analysis, for example ttH (H → 𝜸𝜸) 
and H→𝞵𝞵 (two LHC flagship analyses).

6

Our Goal:
     To perform LHC High Energy Physics analysis with 
Quantum Machine Learning, to explore and to demonstrate 
that the potential of quantum computers can be a new 
computational paradigm for big data analysis in HEP, as a 
proof of principle 
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● We study the quantum machine learning methods on 
gate-based* quantum computer simulators and hardware:
○ 1. IBM quantum computer simulator and hardware (using IBM 

Qiskit libraries)
○ 2. Google quantum computer simulator (using Google Cirq and 

TensorFlow Quantum libraries)
○ 3. Amazon quantum computer simulator (using Amazon Braket 

Cloud Service)
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Our program with Quantum Machine Learning

* gate-based: computing is 
achieved by a sequence of 
quantum gates

Artist’s rendition of 
a superconducting 
quantum computer 
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e.g. in ttH (H→γγ) analysis,
number of features (variables) = 23

● PCA: Principal Component Analysis 
method is used to convert/combine 
features into fewer features to match 
the number of qubits (features = 
variables)

● FeatureMap: encoding classical 
variables to quantum states. Currently, 
in our studies, number of encoded 
variables has to equal number of qubits 
(e.g. 5, 10, 20)

Variational Quantum Classifier method, for 
example

Our Workflow for Quantum Machine Learning



We have applied quantum machine learning to
two LHC flagship analyses: 
ttH (H → 𝜸𝜸) and H → 𝞵𝞵
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ttH (H → 𝜸𝜸) analysis at the LHC 
The observation of ttH production (Higgs boson production in association with a top 
quark pair) by ATLAS and CMS at the LHC directly established the interaction between 
the Higgs boson and the top quark, which is the heaviest known fundamental particle

10

● Using Boosted Decision Tree (BDT) with XGBoost package to 
separate signal from background, the ATLAS Collaboration 
observes the ttH (H→γγ) process  

● Our study performs the event classification of the ttH (H→γγ) 
analysis (hadronic channel) with delphes simulation samples 
and quantum machine learning

(Top)

(((Anti-top)

(Higgs)

Phys. Lett. B 784 (2018) 173 M𝜸𝜸 [GeV]

https://www.sciencedirect.com/science/article/pii/S0370269318305732?via%3Dihub
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H → 𝞵𝞵 analysis at the LHC 
Although the coupling between the Higgs boson and 3rd-generation fermions has been 
observed, currently the coupling between the Higgs boson and 2nd-generation fermions 
is under intensive investigation. H→𝞵𝞵 is the most promising process to observe such a 
coupling by ATLAS and CMS at the LHC
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● Using Boosted Decision Tree (BDT) with XGBoost package to 
separate signal from background, the ATLAS Collaboration 
searches for the H→𝞵𝞵 decay  

● Our study performs the event classification of the H→𝞵𝞵 
analysis (VBF channel) with delphes simulation samples and 
quantum machine learning

Mμμ [GeV]Phys. Lett. B 812 (2021) 135980

https://www.sciencedirect.com/science/article/pii/S0370269320307838?via%3Dihub
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Delphes Simulation
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● Delphes [JHEP 02 057 (2014)] is a program that 
performs fast simulation of multipurpose detectors’ 
response 

● It reconstructs physics objects for physics 
analyses, including photons, electrons, muons, jets 
and missing transverse momentum



Method 1

Employing Variational Quantum Classifier 
for ttH (H → 𝜸𝜸) and H → 𝞵𝞵 analyses
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Method 1: Variational Quantum Classifier (VQC) 
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● In 2018, a Variational Quantum Classifier method 
was introduced by IBM, published in Nature 567 
(2019) 209. 

● The Variational Quantum Classifier method can be 
summarized in four steps.
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Method 1: Variational Quantum Classifier (VQC) 
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● 1. Apply feature map circuit UΦ(𝑥)⃗ 
to encode input data 𝑥 ⃗into 
quantum state |Φ(𝑥)⃗⟩

● 2. Apply short-depth quantum 
variational circuit W(θ) which is 
parameterized by gate angles θ

● 3. Measure the qubit state in the 
standard basis (standard basis: 
|0⟩, |1⟩ for 1 qubit; |00⟩, |01⟩, |10⟩, 
|11⟩ for 2 qubits; ...)

● 4. Assign the label (“signal” or 
“background”) to the event 
through the action of a diagonal 
operator f in the standard basis

● During the training phase, a set of 
events are used to train the 
circuit W(θ) to reproduce correct 
classification

● Using the optimized W(θ), an 
independent set of events are 
used for evaluation and testing
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Using 10 qubits, we successfully finished training and 
testing 100 events with IBM Qiskit QASM simulator (where 
‘100’ events means 100 training events and 100 test events).

● Q simulator (Quantum circuits simulator): here IBM 
Qiskit QASM simulator is used. This simulation 
incorporates the hardware noise

● Quantum circuits are optimized to best fit the constraints 
imposed by hardware (e.g. qubit connectivity, hardware 
noise) and the nature of data

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● Definitions
○ ROC (Receiver Operating Characteristic) Curve: a graph 

showing background rejection vs signal efficiency.
○ AUC: Area Under the ROC Curve, for quantifying 

discrimitation power of machine learning algorithms 
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Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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Using ttH analysis dataset (100 events, 10 
variables) and H → 𝞵𝞵 analysis dataset (100 
events, 10 variables), Variational Quantum 
Classifier on simulator (blue) performs similarly 
with classical BDT (green) and classical SVM 
(yellow).  (Results are averaged over ten 
datasets)

AUC (ttH) AUC (H → 𝞵𝞵)

VQC 0.81 0.83

BDT 0.83 0.80

SVM 0.83 0.82

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM Q simulator for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● With the help of IBM Research Zurich, Fermilab and BNL, 
we have carried out a number of jobs on the IBM 
superconducting quantum computers (ibmq_boeblingen, a 
20-qubit machine and ibmq_paris, a 27-qubit machine). In 
each job, 10 qubits of the quantum computer are used to 
study 100 training events and 100 test events. 

● For each analysis, due to current limitation of hardware 
access time, we apply the Variational Quantum Classifier 
method to one dataset on quantum hardware (rather than 
ten datasets on quantum simulator) 

19

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● The hardware loss (red) is decreasing with the increase of 
number of iterations*. This indicates that the Quantum Computer 
has the ability to learn how to differentiate between the signal 
and the background for a HEP analysis.

Red: Quantum Hardware

Loss:  the mean of the squared 
differences between the output 
scores from the quantum 
algorithm and the ideal scores

* “iteration” indicates the number of times the algorithm’s parameters are 
updated in training

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis
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● Using ttH analysis dataset (100 events, 10 variables) and H → 𝞵𝞵 
analysis dataset (100 events, 10 variables), with 250 iterations, the 
result of Variational Quantum Classifier from Quantum Hardware 
and result from Quantum Simulator are in good agreement. 

hardware AUC = 0.82, simulator AUC = 0.83 hardware AUC = 0.81, simulator AUC = 0.83

Method 1: Employing VQC (Variational Quantum Classifier) with 
IBM hardware for ttH (H → 𝜸𝜸) analysis and H → 𝞵𝞵 analysis



Method 2
 
Employing Quantum Support Vector Machine 
(QSVM) Kernel 
for ttH (H → 𝜸𝜸) analysis

22
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Method 2: Quantum SVM Kernel method
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● Quantum SVM Kernel method (introduced by IBM, published in 
Nature 567 (2019) 209): 

○ map classical data 𝑥⃗  to a quantum state |Φ(𝑥)⃗⟩ using a Quantum 
Feature Map function; 

○ calculate the similarity between any two data events (“kernel entry”) 
as 𝐾(𝑥⃗

1
,𝑥⃗

2
)=|⟨Φ(𝑥⃗

1
)|Φ(𝑥⃗

2
)⟩|² using a quantum computer; 

○ then using the kernel entries to find a separating hyperplane that 
separates signal from background. 

map classical data

     𝑥1⃗→|Φ(𝑥1⃗)⟩ 
     𝑥2⃗→|Φ(𝑥2⃗)⟩
     𝑥3⃗→|Φ(𝑥3⃗)⟩
     ...

calculate kernel entries

𝐾(𝑥⃗1,𝑥2⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗2)⟩|²

𝐾(𝑥⃗1,𝑥3⃗)=|⟨Φ(𝑥1⃗)|Φ(𝑥⃗3)⟩|²

𝐾(𝑥⃗2,𝑥3⃗)=|⟨Φ(𝑥2⃗)|Φ(𝑥3⃗)⟩|²

 ...

find separating hyperplane

𝑥⃗1

 𝑥⃗2

 𝑥⃗3
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Method 2: Quantum SVM Kernel method
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● Quantum SVM Kernel method (introduced by IBM, published in 
Nature 567 (2019) 209): 

○ map classical data 𝑥⃗  to a quantum state |Φ(𝑥)⃗⟩ using a Quantum 
Feature Map function; 

○ calculate the similarity between any two data events (“kernel entry”) 
as 𝐾(𝑥⃗

1
,𝑥⃗

2
)=|⟨Φ(𝑥⃗

1
)|Φ(𝑥⃗

2
)⟩|² using a quantum computer; 

○ then using the kernel entries to find a separating hyperplane that 
separates signal from background. 
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We are performing the ttH analysis using QSVM Kernel 
method with up to 20 qubits: 

○ A customized FeatureMap is used  (consisting of single qubit 
rotation gates and two qubit entanglement gates)

○ Grid-Search with cross-validation is used to optimize the SVM 
regularization parameter

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis  
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● Our group has implemented the QSVM Kernel 
algorithm using the qsim Simulator from the Google 
TensorFlow Quantum framework, the Statevector 
Simulator from the IBM Qiskit framework and the Local 
Simulator from the Amazon Braket framework 
○ These simulators represent the ideal quantum hardware that 

performs infinite measurement shots and experiences no 
hardware device noise 

○ We have overcome the challenges of heavy computing 
resources in the use of up to 20 qubits and up to 50000 
events on the quantum computer simulators 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis  
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● Using ttH analysis dataset (20000 events, 15 variables), QSVM 
Kernel on simulator (red) achieves similar performances with 
classical BDT (blue) and classical SVM (green).  (Results are 
averaged over sixty datasets)

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis 
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● Using ttH analysis dataset (10000-50000 events, 15 variables), 
QSVM Kernel on simulator (red) achieves similar performances 
with classical BDT (blue) and classical SVM (green). 

● QSVM Kernel method and 
noiseless simulators enable 
us to work with a larger 
number of events. 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of events
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● Using ttH analysis dataset (20000 events, 10-20 variables), 
QSVM Kernel on simulator (red) achieves similar performances 
with classical BDT (blue) and classical SVM (green). 

● QSVM Kernel method and 
noiseless simulators also 
enable us to work with a 
larger number of qubits. 

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of qubits
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● Using ttH analysis dataset (20000 events, 10-20 variables), 
Google qsim simulator (red), IBM statevector simulator (blue), 
and Amazon local simulator (green) provide identical 
performances for QSVM Kernel method

Method 2: Employing Quantum SVM Kernel method with 
quantum simulators for ttH (H → 𝜸𝜸) analysis
AUC vs number of qubits
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● We have also been running the QSVM Kernel algorithm 
on quantum computer hardware provided by IBM 
(based on superconducting circuits) 
○ to assess the quantum machine learning performances on 

today's noisy quantum computer hardware

○ due to current limitation of access time on imbq_paris, we 
only process three datasets of 100 training events and 100 
test events

Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis
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Method 2: Employing QSVM Kernel with IBM hardware
(ibmq_paris, a 27-qubit machine) for ttH (H → 𝜸𝜸) analysis

● Using ttH analysis dataset (100 events, 15 variables), the QSVM 
Kernel results on the Quantum Hardware are promising but 
slightly worse than the QSVM Kernel results on Quantum 
Simulator (likely due to effect of hardware noise)

IBM Hardware
hardware AUC = 0.784 

simulator AUC = 0.837



Method 3 

Employing Quantum Neural Network 
for ttH (H → 𝜸𝜸) analysis

33
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Method 3: Quantum Neural Network (QNN) 

34

● Quantum neural networks (QNNs): combining neural 
network algorithms and quantum computing 

○ Perform the computational intensive part of a neural network 
algorithm on a quantum computer for better efficiency and 
performance

● Many QNN  models have been recently studied in the field 
of quantum machine learning,  for example, using Google 
Tensorflow quantum library and IBM Qiskit library 
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We have been developing a hybrid QNN of three layers:
○ Classical layer 1: transform input data so 

that its number of outputs matches 
number of qubits (PCA is no longer 
necessary)

○ Quantum layer (the core part): encode 
classical data into a quantum state, apply 
variational circuit containing trainable 
parameters, measure the quantum state

○ Classical layer 2: convert the 
measurement of qubits to classification 
labels

Three layers are trained together to maximize the overall 
performance

Method 3: Hybrid Quantum Neural Network (QNN) 
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● We employ the hybrid quantum neural network 
method for the ttH (H → 𝜸𝜸) analysis, using:
○ Google quantum computer simulator (using Google Cirq and 

TensorFlow Quantum libraries)

○ IBM quantum computer simulator and hardware (using IBM 
Qiskit libraries)

36

Method 3: Employing QNN for ttH (H → 𝜸𝜸) analysis
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Method 3: Employing QNN with Google simulator 
for ttH (H → 𝜸𝜸) analysis

Work under development

● In the official ATLAS ttH (H → 𝜸𝜸) analysis with LHC data, 
~0.5 million events are used for training+validation+testing

● On Google simulator, we recently apply the QNN to a ttH 
analysis dataset (simulation data using Delphes) of ~0.5 
million events (splitting between training, validation and 
testing samples), which is similar to the sample size used 
in the official ATLAS data analysis
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● Using the ttH analysis dataset with ~0.5 million Delphes events and 13 
qubits, QNN on simulator (blue) now performs similarly with classical 
DNN (yellow). 

● The optimization of this QNN is still under development (e.g. more 
qubits), and we hope to achieve quantum advantage with large datasets

Method 3: Employing QNN with Google simulator 
for ttH (H → 𝜸𝜸) analysis

~0.5 million events Work under 
development

QNN AUC: 0.927

DNN AUC: 0.931



Chen Zhou (U. Wisconsin)   February 22, 2021IHEP Seminar 39

● 100 events, 5 
qubits, 3 runs

● QNN hardware: 
ibmq_essex

● QNN simulator: 
qasm no noise.

● The performance on the 5 qubit hardware is a bit worse 
than the performance with qasm no-noise simulation.

Method 3: Employing QNN with IBM Q hardware (5 qubits) 
for ttH (H → 𝜸𝜸) analysis

AUC (100 events)

Hardware 0.801

Simulator 0.822
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● We form an international and interdisciplinary collaboration with 
the Department of Physics and Department of Computer Sciences 
of University of Wisconsin, CERN Quantum Technology Initiative, 
IBM Research Zurich and IBM T.J. Watson Research Center, 
Fermilab Quantum Institute, BNL Computational Science Initiative, 
State University of New York at Stony Brook, Quantum Computing 
and AI research of Amazon Web Services

● Although the era of efficient quantum computing may still be 
years away, we have made promising progress and obtained 
preliminary results in applying quantum machine learning to High 
Energy Physics. A PROOF OF PRINCIPLE.

40

Summary (part 1)
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● We have employed 3 methods of Quantum Machine Learning

● Method 1: VQC-Variational Quantum Classifier
● Method 2: QSVM-Quantum Support Vector Machine Kernel
● Method 3: QNN-Quantum Neural Network 

● We have applied the three methods to two LHC HEP flagship 
analyses (ttH (H → 𝜸𝜸) and H → 𝞵𝞵) with Delphes simulation 
events. 

41

Summary (part 2)
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● Results from Quantum Simulator
● With 100 events and 10 qubits, method 1, VQC method on IBM 

Quantum Simulator performs similarly to classical BDT and 
classical SVM. 

● With up to 50000 events and up to 20 qubits, method 2, QSVM 
Kernel method on Google, IBM and Amazon Quantum 
Simulators performs similarly to classical BDT and classical 
SVM in the ttH (H → 𝜸𝜸) channel. 

● With ~0.5 million events and 13 qubits, method 3, QNN method 
on Google Quantum Simulator performs similarly to classical 
DNN in the ttH (H → 𝜸𝜸) channel.

● Results from Quantum Hardware
● With 100 events, for VQC (10 qubits), QSVM Kernel (15 qubits), 

QNN (5 qubits), IBM Quantum Hardware and IBM Quantum 
Simulator show comparable performance.

42

Summary (part 3)
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● AUC: Area Under the ROC* Curve, for quantifying discrimitation 
power of machine learning algorithms

43

Summary (part 4)

ttH (H->𝜸𝜸) VQC 
IBM 
simulator

QSVM Kernel
Google, IBM, 
Amazon simulator

QNN
Google 
simulator

AUC 0.83
(100 events
10 qubits)

0.92
(20000 events
20 qubits)

0.93
(~0.5 million events
13 qubits)

*ROC (Receiver Operating Characteristic) Curve: a graph showing background 
rejection vs signal efficiency.
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● Our results (on both simulators and hardware) demonstrate 
quantum machine learning on the gate-model quantum 
computers has the ability to use the large dimensionality of 
quantum Hilbert space and differentiate signal and background 
in realistic physics datasets

● Future developments: 
● We will investigate further and hopefully will see soon 

quantum machine learning outperforms classical machine 
learning, in particular, when more qubits are utilized

● Furthermore, future quantum computers might offer speed 
ups in quantum machine learning which could be critical for 
the HEP community

44

Summary (part 5)
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● Difficulties at present:
● Only ~100 events are used in hardware jobs

■ Limited access time
● Only ~10 qubits are used in hardware jobs

■ Circuit length and number of CNOT gates are limited

● To use Quantum Computer Hardware for Machine 
Learning in future High-Luminosity LHC physics 
analyses, we need to extend our studies to larger 
event sample sizes and more qubits

● To demonstrate that future Quantum Computers 
offer speed up in Quantum Machine Learning 

45

Challenges ahead


