

中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS

CEPC加速器平衡极化度的模拟 及自旋旋转器相关设计

On Behalf of CEPC Polarization Working Group 2021年02月05日

平衡极化 度的模拟 计算

- 我们这里主要利用了三种算法:
 - 1. SLIM (First-order)
 - 2. MonteCarlo方法(Higher-order)
 - 3. 自旋共振强度定义公式法(Higher-order)
- 1. 只考虑一阶自旋共振时: SLIM 我们在Bmad/PTC中,根据给定的lattice得到n0, ³/₆,之后利用DKM公式得到 平衡极化度Pdk,及其他的一些重要参数。

$$P_{\rm dk} = \frac{-\frac{8}{5\sqrt{3}} \times \oint ds \left\langle \frac{1}{|\rho(s)|^3} \hat{b} \cdot (\hat{n} - \frac{\partial \hat{n}}{\partial \delta}) \right\rangle_s}{\oint ds \left\langle \frac{1}{|\rho(s)|^3} (1 - \frac{2}{9} (\hat{n} \cdot \hat{s})^2 + \frac{11}{18} \left(\frac{\partial \hat{n}}{\partial \delta}\right)^2) \right\rangle_s}$$

$$\vec{P}_{\rm bks} = -\frac{8}{5\sqrt{3}} \,\hat{n}_0 \, \frac{\oint ds \frac{\hat{n}_0(s) \cdot \hat{b}(s)}{|\rho(s)|^3}}{\oint ds \frac{\left[1 - \frac{2}{9}(\hat{n}_0(s) \cdot \hat{s})^2\right]}{|\rho(s)|^3}} \qquad \qquad \tau_{\rm bks}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_{\rm e} \gamma^5 \hbar}{m_{\rm e}} \frac{1}{C} \oint ds \, \frac{\left[1 - \frac{2}{9}(\hat{n}_0 \cdot \hat{s})^2\right]}{|\rho(s)|^3}$$

2. 考虑高阶自旋共振时: MonteCarlo方法

✓利用Bmad/PTC,通过MC对极化束流的极化度进行追踪,可以得到λd:

$$P(t) = \exp\left(-\frac{2\pi ct}{C}\lambda_d\right)$$

✓利用以下公式,得到平衡极化度Peq:

$$\begin{split} P_{\rm eq} &\approx \frac{P_{\infty}}{1+\lambda_d/\lambda_p}, \\ P_{\infty} &\approx -\frac{8}{5\sqrt{3}} \frac{\oint \mathrm{d}\theta \frac{1}{|\rho|^3} \hat{b} \cdot \hat{n}_0}{\oint \mathrm{d}\theta \frac{1}{|\rho|^3} [1-\frac{2}{9} (\hat{n}_0 \cdot \hat{s})^2]}. \\ \lambda_p &= \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_e} \frac{C}{2\pi c} \oint \mathrm{d}\theta \langle \frac{1-\frac{2}{9} (\hat{n} \cdot \hat{\beta})^2}{|\rho|^3} \rangle. \end{split}$$

其中P∞, λp可以通过SLIM得到,分别对应于Pbks, 1/tao_bks

- 3. 考虑高阶自旋共振时: 自旋共振强度定义公式法
 - ✓直接利用SAD相关参数,可以得到,自旋共振强度wk: Z能区 k=103,104贡献最大。

$$\omega_{\rm k} = \frac{\nu}{2\pi} \int_0^{2\pi} y''_0 e^{-i\nu\phi} d\theta$$

✓平衡极化度Peq=G*Pbks, 其中G的表达式为:

$$G \approx \left\{ 1 + \frac{11\nu^2}{18} \sum_{k,l} \frac{|w_k|^2 I_l(\sigma_v^2 / \nu_\gamma^2) \exp(-\sigma_v^2 / \nu_\gamma^2)}{\left[\left(|v - k| - lv_\gamma \right)^2 - v_\gamma^2 \right]^2} \right\}^{-1}$$

1: order of sideband resonance;

I₁: modified Bessel function, v_{γ} =0.028 for CEPC Z-mode.

δv: 自旋能散δv=nu(自旋工作点)×δe相对能散

- 实际误差矫正的CEPC lattice的平衡极化度:
 - ✓ 20个不同的随机种子误差矫正CEPC lattice, 120GeV, sad 格式 (from 王斌) 最终聚焦段准直误差: 50微米; 其他地方: 100微米。
 - ✓ SAD: 120GeV->45.5GeV, 高频接受度1.7%, 关掉高频区下游高频腔
 - ✓ SAD to Bmad.

SLIM:实际误差矫正的CEPC lattice的平衡极化度
 我们对多个随机种子都进行了计算,平衡极化度的分布基本相同。

● MonteCarlo方法和自旋共振强度定义公式:

表 1-1 整数目旋谐波振幅wk的计算及相关参数

	同步工作点 Q_s	相对能散等	方法一 w_k
CEPC_0001	0.028	3.75855E - 4	$ w_{103} ^2 = 2.709E - 9$
			$ w_{104} ^2 = 2.652E - 9$
CEPC_0010	0.028	3.58604E - 4	$ w_{103} ^2 = 4.194E - 10$
¥			$ w_{104} ^2 = 1.805E - 9$

MC结果与公式法结果基本吻合。

● Wiggler对平衡极化度的影响:

	表 1-2 CEPC Z 能区分对称扭摆器的相关参数										
B_+	L_+	<i>B</i> _	L_{-}	$\tau_p(h)$	$U_0({ m MeV})$	相对能散。	P_{max}	$ w_{103} ^2$	$ w_{104} ^2$		
0.6T	1m	0.15T	2m	19.6h	44	9.5E-4	0.828	4.20E-10	1.81E-9		

相对能散增加, U0增加, 自极化时间缩短。

● W能区的平衡极化度:

表 1-4 W 能区,整数自旋谐波振幅wk的计算及相关参数

	同步工作点 Q_s	相对能散音	w_k
CEPC_0001	0.0395	6.60775E - 4	$ w_{181} ^2 = 1.287E - 8$
			$ w_{182} ^2 = 5.198E - 8$

W能区平衡极化度小于Z能区

自旋旋转 器的相关 设计

- CEPC Z能区纵向极化方案:
 - ▶ 纵向极化束流对撞:
 - ✔ 自旋旋转器:

自旋旋转器可以将极化方向从横向旋转为纵向,经过IP之后,再将极化方向旋转回来。

- 基于螺线管的自旋旋转器:
 - ① 螺线管区域: $\int B_{sol} dl \approx 30m \times 8T$

② 偏转磁铁区域:水平偏转角度0.015rad

▶ 螺线管区域:

- x-y 解耦合结构单元。 Ι.
- 每个自旋旋转器由10个相同的单元组成。∫^Bsold ≅ 30m × 8T Π.

11T

Ⅲ. 传输矩阵:

$$\left(egin{array}{cccc} 1 \ L_{tot} & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 - L_{tot} \ 0 & 0 & 0 & -1 \end{array}
ight)$$

1

- Ⅳ. 该结构单元对轨道运动相当于:
- 一个等长的漂移管&垂直方向的相移0.5 x 2π

Solenoid	1	Q1	Q2	Q3	Q4	Q3	Q2	Q1	Solenoid 2
									
V.	D1	D	2	D3	D4 1		03 J	D2 D1	

Vladimir N. Litvinenko and Alexander A. Zholents, arXiv:1809.11138 [physics.acc-ph](2018).

\$	Solenoids	Quadru	poles	Drifts	
Length (m)	Field strength (T)	$\frac{\frac{\partial B_y}{\partial x}}{(m^{-2})}$	Length (m)	Length (m)	Total Length (m)
1.48895	8	Q1: -0.83 Q2: 1.35 Q3: -0.90 Q4: -0.82	0.8	D1: 0.2 D2: 0.2 D3: 0.2 D4: 0.1	9.97796

▶ 偏转磁铁区域:

- I. 改变对撞区原有的几何结构。
- II. 保持弧区正负电子环的距离为D=0.35m
- III. 原版: θ₁=-0.01921[rad], θ₂=0.02935[rad], θ₂+θ₃=0.01379 [rad]
- IV. 之后: -c₁*θ₁=c₂*θ₂= 0.015[rad], θx= 0.0025[rad]

• 自旋旋转器对轨道运动的影响:

w/o spin rotator

w/ spin rotator

	U_0 (MeV)	Emittance ϵ_x (nmrad)	Energy spread σ_γ	Betatron tune ν_x/ν_y
Original lattice	36.0	0.18	3.75×10^{-4}	363.11/365.22
Lattice with spin rotators	39.3	1.1	4.09×10^{-4}	363.11/385.22

自旋旋转器参数和储存环磁聚焦结构需要进一步优化。

● Bmad/PTC模拟计算:

▶ 极化方向**n**₀沿全环的分布 $\vec{n}_0(\theta) = \vec{n}_0(\theta + 2\pi)$

- I. 没有自旋旋转器时: 全环都是垂直方向;
- II. 加入自旋旋转器: 垂直->纵向(IP)->垂直

● Bmad/PTC模拟计算,基于SLIM: ▶ 平衡极化度 P_{dk}:

$$P_{\rm dk} = \frac{-\frac{8}{5\sqrt{3}} \times \oint ds \left\langle \frac{1}{|\rho(s)|^3} \hat{b} \cdot (\hat{n} - \frac{\partial \hat{n}}{\partial \delta}) \right\rangle_s}{\oint ds \left\langle \frac{1}{|\rho(s)|^3} (1 - \frac{2}{9} (\hat{n} \cdot \hat{s})^2 + \frac{11}{18} \left(\frac{\partial \hat{n}}{\partial \delta}\right)^2) \right\rangle_s}$$

仅考虑一阶自旋 共振的情况下, CEPC Z能区平衡极 化度。 MC在追踪过程中 粒子会丢失,所 以重新CEPC Z lattice的重新设计 十分有必要。

● 自旋旋转器对新 CEPC Z lattice 设计的基本要求

➢ Solenoid+quadrupoles直线节的长度:

现在我们仅仅实现了SOL的decouple功能,长度100m, 今后,为了减小Q铁的强度,spin matching,及与主环的匹配。 直线节的长度需要和王毅伟师兄具体讨论。

 从对撞点到直线节的总的horizontal bending偏转角度: θ=±0.015[rad], 从而可以实现自旋pi/2的偏转

自旋旋转 器的自旋 匹配

✓ 轨道和自旋运动的8*8矩阵:

$$\hat{\mathbf{M}} = \begin{pmatrix} \mathbf{M}_{6\times6} & \mathbf{0}_{6\times2} \\ \mathbf{G}_{2\times6} & \mathbf{D}_{2\times2} \end{pmatrix} \qquad \hat{n}(\vec{u};s) = \hat{n}_0(s) + \alpha(\vec{u};s)\hat{m}(s) + \beta(\vec{u};s)\hat{l}(s)$$

作用在 (\vec{u}, α, β) , 对自旋的扰动通过G矩阵来体现。 G=0时, 就实现了完全的自旋匹配。

$$G = (g_x, g_z, g_s),$$

不同元素的8*8矩阵:

漂移管: 四极铁: $M_{driff} = \begin{pmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $g_{x} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad g_{z} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad g_{s} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$

$$\begin{split} M_{\text{quood}} = \begin{pmatrix} C_x & S_x & 0 & 0 & 0 & 0 \\ \hat{C}_x & \hat{S}_x & 0 & 0 & 0 & 0 \\ 0 & 0 & C_z & S_z & 0 & 0 \\ 0 & 0 & \hat{C}_z & \hat{S}_z & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \\ g_x = \begin{pmatrix} (1+a\gamma)\hat{C}_x\mathbf{I}_z & (1+a\gamma)(\hat{S}_x-1)\mathbf{I}_z \\ -(1+a\gamma)\hat{C}_x\mathbf{m}_z & -(1+a\gamma)(\hat{S}_x-1)\mathbf{m}_z \end{pmatrix} \\ g_z = \begin{pmatrix} (-(1+a\gamma)\hat{C}_z\mathbf{I}_x & -(1+a\gamma)(\hat{S}_z-1)\mathbf{I}_x \\ (1+a\gamma)\hat{C}_z\mathbf{m}_x & (1+a\gamma)(\hat{S}_z-1)\mathbf{m}_x \end{pmatrix} \\ g_s = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

✓ 参考I.A.Koop的设计方案:

通过自旋匹配,消除自旋扰动的影响。

例子:eRHIC project,E=7.5GeV, Lsol=3m.

				-3.16856×10^{-17}	-7.63944	0.	6.66134×10^{-10}	0.	0.	0.	0.
Tv-	1 0	8 L	N	0.1309	-2.91434×10^{-16}	1.04237×10^{-17}	-1.11022×10^{-16}	0.	0.	0.	0.
17-	0			0.	8.88178×10^{-16}	6.07511×10^{-17}	7.63944	0.	0.	0.	0.
	-	π		1.22403×10^{-17}	- 1.11022 $ imes$ 10 ⁻¹⁶	-0.1309	2.77556×10^{-16}	0.	0.	0.	0.
	π	•		0.	0.	0.	0.	1.	0.	0.	0.
		9		0.	0.	0.	0.	0.	1.	0.	0.
	\ <mark>8</mark> L		/	0.	0.	0.	0.	0.	1.5708	1.	0.
				2.35886	4.77982×10^{-6}	-3.49966	-18.0203	0.	0.	0.	1 .)

I.A.Koop, "Spin transparent Siberian snake and spin rotator with Solenoids "

✓ CEPC Z soleniod section的8*8矩阵:

10个相同的decouple unit(SOL_MOD);

Q铁;

Drift;

SOL_MOD QFCIRD	SOL_MOD DRCIRDSO	L						
SOL_MOD	SOL_MOD							
QDCIRD	DRCØIRD	MTELEMIRD		DMØIRD				
QM1IRD	DMIRD	QM2IRD	DMIRD	QM3IRD	DMØIRD	DMØIRD		
QM4IRD	DMIRD	QM5IRD	DMIRD	QM6IRD	DMØIRD	DMØIRD		
QM7IRD	DM2IRD	SOL						
SOL_MOD	SOL_MOD							
QM8IRD	DM2IRDSO	L						
SOL_MOD	SOL_MOD							
QM9IRD	DMØIRD	DMØIRD						
QM10IRD	DM2IRDSOL							
SOL_MOD	SOL_MOD							

整个 $\pi/2$ SOL section的G矩阵元素比较大。

计划:不调整SOL_MOD,

只调整QM1RD->QM6IRD的强度,令G矩阵为零。

0.138702	37.7325	3.10792×10^{-15}	$9.77046 imes 10^{-14}$	0.	0.	0.	0.
-0.0193346	1.94991	3.37896×10^{-17}	-5.03854×10^{-17}	0.	0.	0.	0.
-5.318×10^{-16}	1.30423×10^{-14}	-0.429922	-19.688	0.	0.	0.	0.
2.9272×10^{-16}	4.6032×10^{-16}	0.375901	14.8882	0.	0.	0.	0.
0.	0.	0.	0.	1.	0.	0.	0.
0.	0.	0.	0.	0.	1.	0.	0.
0.	0.	0.	0.	0.	1.5708	1.	0.
-3.57017	230.513	1.46056	-45.5281	0.	0.	0.	1.

- ✓ 小结:
 - 平衡极化度的模拟:我们已经完成了误差矫正之后lattice的平衡极化 度模拟分析。针对Wiggler对平衡极化度的影响进行了初步分析。
 同时也观察了W能区的平衡极化度。
 - 关于自旋旋转器,我们已经实现了自旋偏转的功能。相关lattice 有待 于进一步修改和优化。
 - 掌握了Solenoid section的自旋匹配方法。下一步需要重新设计一个既能解耦合,又能自旋匹配的Solenoid section.

