The expected irradiation damage of CSNS target

W.Yin, Q.Z.Yu, Y.L.Lu, S.L.Wang, J.F.Tong, T.J.Liang*

Neutronics Group CSNS Experimental System

OUTLINE

- Introduction
- > The irradiation damage evaluation of CSNS target
- > The estimation of the lifetime of the target
- Summary

CSNS target station

The sketch of CSNS TS

CSNS TS will maintain the moderators and target separately to simplify remote handling in the hotcell

Quantities for the target damage due to irradiation

• Nuclear heating due to proton, neutron and gamma interactions with the nuclides

• Radiation damage in terms of the number of displacements per atom (dpa)

• The total helium and hydrogen production

Heat deposition of the target

Heat deposition of the target

Heat deposition of the target

Afterheat of the target

The afterheat of the target (beam power 240kW)

nuclide	λ	0s	1s	1h	8h	1d	2d	3d	7d	30d
W 187	1 d	33.5	33.5	34.0	51.7	57.2	52.3	40.0	27.3	2.9
W 185	75. 1d	2.8	2.8	4.4	6.0	8.7	13.2	18.0	30.5	37.6
Ta182	114 .4d	81.6	81.9	86.2	88.6	90.2	91.6	92.6	95.2	98.8

The temperature of the target when it is cooled by water after the beam stops

The temperature of the target when it is cooled by natural ventilation

Damage energy and gas production cross section

Helium cross section versus proton energy for Fe.

Helium cross section versus proton energy for Pb.

W.Lu, M.S.Wechsler, J.Nucl.Mater.361(2007)282

Damage energy and gas production cross section

Neutron transport

En<20 MeV ENDF/B-VI

20MeV<En<150MeV LA150N

En>150MeV

CEM2K (tungsten)

Bertini/Julich level denisty /MPM on(SS316)

Proton transport

Ep<150MeV LA150H for He and H production

Ep>150MeV CEM2K (tungsten)

Bertini/Julich level denisty /MPM on(SS316)

Physics models are used for all damage energy calculation due to protons

Damage energy and displacement cross section

The calculation of Damage energy and displacement cross section

$$\sigma_e = T_{dam} / N_v x$$

- σ_{e} = Damage cross section
- T_{dam} = Mean Damage Energy per source particle (recoil energy, including elastic)
- x = sample thickness
- $N_v = Atomic Density$
 - $\sigma_d = \sigma_e \beta / (2T_d)$ (Modified Kinchin-Pease model, NRT model)*
- σ_d = Displacement cross section
- β = 0.8, deviation from a hard sphere (Kinchin & Pease). Compensates for forward scattering in the displacement cascade.
- T_d = Threshold displacement energy (see table)
- Factor of 2: on average the PKA (Primary Knocked-on Atom) energy is shared equally between two atoms after the first collision. Compensates for energy lost to subthreshold reactions.

^{*}M.J.Norgett, M.T.Robinson, and I.M.Torrens, Nucl.Eng.Des.33,50 (1975)

Damage energy and displacement cross section

Threshold Displacement Energies Td

Element	Td (eV)
Lithium	10
Beryllium	31
Carbon	31
Aluminum	27
Silicon	25
Chromium	40
Iron	40
Nickel	40
Copper	40
Zirconium	40
Niobium	40
Molybdenum	60
Tin	60
Tantalum	53
Tungsten	90
Lead	25

Damage energy and gas production cross section

Neutron and proton induced damage energy and gas production cross sections by ENDF/B-VI (En<20MeV), LA150 (20MeV<En<150MeV), and Bertini/Julich/MPM on for SS316 (En>150MeV, Ep>1MeV). Neutron induced damage energy cross section by Bertini (black), ISABEL (red), CEM (blue)

LA150 (line)

From Wei Lu et al J.ASTM Internation Vol.3.No.7

Damage energy and gas production cross section libraries

Neutron and proton induced damage energy and gas production cross sections by ENDF/B-VI (En<20MeV), LA150 (20MeV<En<150MeV), and CEM2K for tungsten (En>150MeV, Ep>1MeV).

Neutron induced damage energy cross section by Bertini (black), ISABEL (red), CEM (blue)

LA150 (line)

From Wei Lu et al J.ASTM Internation Vol.3.No.7

The calculation model of CSNS target

Horizontal cut of MCNPX model

All calculations are for 100kW and 5,000 hours (1 operating year).

center

Proton beam profile

Energy 1.6GeV Gaussian Wide FWHM 66 mm Height FWHM 22 mm Uniform Wide 120 mm Height 40 mm

The proton and neutron flux of the target vessel window: Gaussian

FWHM 22 mm

Double Gaussian distribution

WideFWHM 66 mmHeightPeak current density 3.86 µA/cm²

The proton and neutron flux of the target : Gaussian

The maximum neutron flux located on the fourth target plate and the maximum proton flux located on the first target plate

IWSMT-10, Oct. 19th

The neutron and proton fluxes of the target

The proton and neutron flux of the target vessel window: uniform

Flat distribution

Wide120 mmHeight40 mmPeak current density1.30 µ A/cm²

The proton and neutron flux of the target : uniform

The maximum neutron flux located on the fourth target plate and the maximum proton flux located on the first target plate

The neutron and proton fluxes of the target

 Π

The damage evaluation of CSNS target

The neutron and proton fluxes under to inject proton profile (a) the vessl window (b) the forth target

Calculation the damage of dpa and gas production by folding the fluxes into the damage and gas production cross sections

╢

The damage evaluation of CSNS target

Radiation damage rate			
	Uniform	Gaussian	SNS
Displacement (dpa/yr)			
Window [.]	1.29	2.52	21
Target	2.20	5.37	
Proton flux in tally zone*	$(\times 10^{14} \mathrm{p/cm^{2/s}})$		
	0.078	0.25	1.52
Neutron flux in tally zone	$e^{*} (\times 10^{14} \text{n/cm}^2/\text{s})$		
	0.60	0.86	8.78

* Data from M.H.Barnett J.Nuclear Materials 296 (2001) 54

He production appm/dpa=80, H production appm/dap=300

Estimation of the life time of the target

	Uniform	Gaussian	Allowable DPA	
Lifetime				
Window	~ 8	~4	10	
Target	~ 5	$\sim 2^{\circ}$	10	

Life time is dominated by the dpa of the front target

Summary

The appropriate choose of the physics model for the different materials

The proton beam profile especially its peak intensity is very important

The damage energy cross section under the different physics model

W.Yin, T.J.Liang, Q.Z.Yu, X.J.Jia J.Nucl.Mater. 398 (2010)100

Thank you for your attention!