18-22, October, 2010, Beijing, China Tenth International Workshop on Spallation Materials Technology

Microwave Sintering of W/Cu Functionally Graded Materials

R. Liu, <u>T. Hao</u>, K. Wang , T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang*

Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

Http://if.issp.ac.cn

Research project

Supported by

- 1) "Key Project of Chinese Academy of Sciences" (Grant No. KJCX2-YW-N35)
- 2) "National Natural Science Foundation of China" (Grant No. 11075177)

Focused on

- The fabrication of W/Cu functionally graded materials (FGM)
- 2) The evaluation on physical properties (i.e. relative density, thermal conductivity etc.)

Fabrication of W/Cu FGM

W-Cu powders → hand mixed

W: average particle size 3 µ m, purity >99.9 Cu: average particle size 8 µ m, purity >99.7%

3) Sintering

Microwave sintering (MWS) (30min.)

Spark plasma sintering (SPS)

Why W/Cu FGM?

Features of W and Cu

- W: ideal candidate as plasma facing material and spallation material due to its high radiation resistance, high sputtering resistance;
- 2) Cu: heat sink material due to high thermal conductivity

Joining of W and Cu

Challenges

- 1) W: 500°C(DBTT)~1300°C (Recry. Temp.)
- Mutual insolubility of W and Cu
- 3) Difference in coefficient of thermal expansion between W and Cu ($\alpha_{Cu} \approx 4 \alpha_{W}$)

→ formation of thermal-induced stresses at the interface

The design concept of functionally graded material between W and Cu

G. Mattews, presented at 15th PSI (2002)

J.W.Daviset al., J. Nucl. Mater. 258-263 (1998) 308.

Why Microwave sintering(MWS)?

Points of MWS:

rapid heating rate and short sintering time

- → the crystal growth can be inhibited
- → fine grain size is beneficial to improve radiation resistance of materials because a lot of grain boundaries can trap the defects that were produced by irradiation.

Motivation: to fabricate the W/Cu FGM with good properties, such as high radiation resistance and thermal conductivity etc.

Overview of W/Cu FGM

FGM structure (vol.%)	fabrication method	relative density	thermal conductivity (W/mK)	Ref.
W-25%Cu (and W-60%Cu)	plasma spraying	95% for W- 25%Cu (SEM)	97 (at 100°C)	Pintsuk et al., Fusion Eng. Des.66-68 (2003) 237
W-Cu mixing powder/ W- 25%Cu	plasma- spraying	92%-97% (SEM)	124-137 (at room temp.)	Döring et al., Fusion Eng. Des. 66-68 (2003) 259
W/ W-Cu20%/ W-Cu40%/ W- Cu60%/ W- Cu80%/ Cu	sintering under ultra- high pressure	-	113 (at room temp.)	Zhou et al., J. Nuclear Mater. 363-365 (2007) 1309
W/W-Cu25%/ W-Cu50%/ W- Cu75%/ Cu	one-step resistance sintering method	97%	-	Zhou et al., J. Alloys. Comp. 428 (2007) 146

Starting powders-before MWS

tungsten powders

SEM

 $(W\sim3 \mu m)$

XRD (intensity (a.u.) 20 40 60 80 100 20 (degree)

copper powders

Cross-sectioned structure of W/Cu FGM-after MWS @ 1350°C

- 1) with the decrease of Cu, many pores are observed in layers;
- the W particle sizes almost remain unchanged in all layers (W \sim 3 μ m)

Relative density of the W/Cu FGM

Thermal conductivity of W/Cu FGM

- 1) A of about 200 W/mK (room temp.) is obtained in the W/Cu FGM, which is much higher than that in pure W(147 W/mK).
- 2) Both λ and relative density have same tendency with MWS temperature, so λ may be dependent on the relative density.

In comparison with Ref.

structure (vol.%)	fabrication method	relative density	thermal conductivity (W/mK)	Ref.
W-25%Cu (and W-60%Cu)	plasma spraying	95% for W- 25vol.%Cu (SEM)	97 (at 100°C)	Pintsuk et al., Fusion Eng. Des.66-68 (2003) 237
W-Cu mixing powder/ W-25%Cu	plasma-spraying	92%-97% (SEM)	124-137 (at room temp.)	Döring et al., Fusion Eng. Des. 66-68 (2003) 259
W/W-Cu20%/ W-Cu40%/ W- Cu60%/ W-Cu80%/ Cu	sintering under ultra-high pressure	-	113 (at room temp.)	Zhou et al., J. Nuclear Mater. 363-365 (2007) 1309
W/W-Cu25%/ W-Cu50%/ W- Cu75%/ Cu	one-step resistance sintering method	97%	-	Zhou et al., J. Alloys. Comp. 428 (2007) 146
W/W-Cu10%/ W-Cu30%/ W- Cu50%/W-70%Cu	Microwave sintering	93%	200 (at room temp.)	present study

Summary

- 1) W/Cu FGM with five-layered structure W-Cu70% / W-Cu50% / W-Cu30% / W-Cu10% / W100% (vol.%) have been successfully fabricated by microwave sintering.
- 2) Microwave sintering is effective in densifying (93% MWS at1350°C) the W/Cu FGM with high thermal conductivity of about 200 W/mK (room temp.).
- The thermal conductivity of the W/Cu FGM was improved with increasing microwave sintering temperature.
- 4) Microwave sintering is a promising way for preparing W/Cu FGM.