

Developments in the design of the MYRRHA spallation target

Paul Schuurmans

On behalf of the MYRRHA team & IP Eurotrans WP 1.4 Paul.Schuurmans@sckcen .be

Copyright © 2010 SCK•CEN

IWSTM-10 Beijing

Overview

The MYRRHA Project

- Present Status of the project
- Design of the MYRRHA spallation target
- R&D support actions
 - Thermal-hydraulics
 - Vacuum interface
 - Beam target interaction
 - Chemistry control
 - Mechanical analyses
 - Radiation damage
 - Safety analyses
- Future developments

MYRRHA nuclear research fields

	Challenge	Solution	MYRRHA contribution
Fission	High radiotoxic level waste	Transmutation	ADS demo
Fission GEN IV	Demonstrate concept	Build demonstrators	LFR technology demo Fast spectrum irradiation facility
Fusion	Extreme operating conditions	Material testing & development	Fast spectrum irradiation facility
Fundamental research	Pushing the limits of knowledge	Access to proton beam	Long term experiments with radioactive ion beams (RIB)
Renewable energies	Efficient power electronics	High efficiency transistors (NTD-Si)	Securing NTD-Silicon production
Healthcare	Ageing population	A long term source of medical radioisotopes	Securing radioisotopes production (existing and new ones)

Concept

Financial picture : 960 M€ investment

Funding the next phase of work: 2010-2014

Updated project schedule 2010 - 2024

Accelerator driven system : concept

Spallation target for an experimental ADS

- Produce enough neutrons to feed subcritical core @ k_{eff}=0.95
 - Irradiation performance of ADS
- Accept megawatt proton beam
 - 600 MeV, 2.5-3.5 mA ⇒ ≈1-1.3 MW heat
- Fit inside hole in subcritical core
 - compact target
- Allow for exploitation of MYRRHA as experimental irradiation machine
 - flexible remote handling
 - Shadow above core
- Safety & economy
 - Reliability & lifetime

Spallation target concept properties

- Produce enough neutrons to feed subcritical core
 - LBE as target material
 - Low temperature possible
 - ≻ Low vapour pressure
- Fit inside hole in subcritical core
 - Windowless target
 - > Avoid most loaded part of system
 - Beam current density
 - Precautions in case of window failure to be taken anyway
 - Vertical coaxial confluent LBE flow

Spallation target concept properties

- Allow for exploitation of MYRRHA as experimental irradiation machine
- Safety & economy
 - Off axis unit for loop
 - Loop away from high radiation zone
 - Leave core free for experiments & fuel
 - LBE flow & cooling
 - Forced convection
 - ➤ HEX to main coolant of reactor
 - Service by remote handling
 - > Replaceable loop & components

Spallation target loop layout

Spallation target loop layout

Spallation target thermalhydraulics

x 10¹¹ 12 10 8 depth [m] 6 4 2 0.4 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2 0 radius [m]

• Formation of target free surface

- Feeder head
- Drag enhancer
- Target nozzle
- Forced detachment
 - Decoupled inlet-outlet flow
 - Buffer during beam transient
- Flow feedback
- Recirculation zone
- Proton beam distribution

Spallation target : radiation damage

Spallation target : radiation damage

Spallation target : mechanical analyses

- Analyses critical due to shape of target tube
 - 3 lobed structure
 - Inner tube needed
 - Sufficient wall thickness in high stress paces
 - T91 or similar required (strength)
 - Max deflection <0.25 mm
 - VM stress ≤ 466 MP

1 MP external pressure, 4mm wall thickness

Spallation target : mechanical analyses

100.00 (mm)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Remove stress points

Summary

- Design of MYRRHA spallation target loop
- Fundamental properties
 - No target window
 - Compact vertical confluent flow
 - Detached flow in target nozzle
 - Off axis servicing
 - Active pump in feeder line
 - Vacuum & cover gas system, Oxygen control unit
- R&D support
 - Thermal hydraulics
 - Vacuum interface
 - Beam target interaction
 - Mechanical analyses
 - Safety analyses
- Windowless spallation target feasible for MYRRHA

What about a window target for MYRRHA ?

- Beam energy increase since initial choice for windowless target
 - 350 MeV, 5 mA \rightarrow 600 MeV, 3 mA
 - Damage per proton
 - Current density
 - He production vs dpa damage
- Target window
 - Material choice
 - Operation temperature
 - Cooling
 - Replacement scheme
 - Safety issues

Effects of irradiation on target window Ferritic-Martensitic steel T91

MYRRHA

Red / blue: most prominent in austenitic / ferritic-martensitic steel

DBTT shift Ferritic-Martensitic steel

- DBTT shift linear with dose
- Data for irradiations below 380°C

DBTT shift Ferritic-Martensitic steel

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

STIP-III irradiation data of T-91 steel at different irradiation temperatures. Tensile test at 25°C

STIP-III irradiation data of T-91 steel at different temperatures. Tensile test at elevated temperatures

Liquid metal embrittlement

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Plastic deformation at high stress

Ductility and fracture toughness

- Elongation reduction below 450°C
- Partial recovery above 500°C
- LBE lowers ductility further but less so at high T

Design efforts target window

- Target window possible in FM steel (T91) ?
- As low as possible current density
- Operation temperature around 500°C
 - Corrosion ok for short lifetime (min 90 days)
- Stress as low as possible

Design efforts target window

Design efforts target window

• To be continued.....

Thank you !

谢谢

Copyright notice

Copyright © 2010 - SCK•CEN

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL Operational Office: Boeretang 200 – BE-2400 MOL