FeCrAIY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE

Y. Dai, V. Boutellier, R. Restani, H. Glasbrenner* H.P. Linder, D. Gavillet, A. Weisenburger**, W. Wagner

Paul Scherrer Institut, Switzerland * Swiss Federal Nuclear Safety Inspectorate(ENSI), Switzerland ** Forschungszentrum Karlsruhe GmbH, IHM, Karlsruhe, Germany

T91/TiN - Tube preparation

Glasbrenner, JNM 356 (2006) 213.

T91/FeCrAlY Sample preparation

	Fe [wt%]	Cr [wt%]	Al [wt%]	Y [wt%]	Ni, Co [wt%]
powder	76.7	15.5	7.4	0.37	<0.03
coating	76.6	15.82	6.39	0.44	NN
+ GESA	80.5	15.2	3-4	NN	NN

FeCrAlY-coating & GESA: Front face only

Irradiation experiment

Irradiation period: September 19 – November 14, 2005

Lisor6 – Test Section Tube

Lisor6 – Stressed Specimen

Sample bent during irradiation: \Rightarrow non-centric position in the test section tube \Rightarrow dpa-correction

Lisor6 - Gamma Mapping

Lisor-6 Cutting plan

Lisor-6 Post Irradiation Examinations (PIE)

- EPMA/SEM inspection of the irradiated, TiN coated tube, and FeCrAlY/GESA coated specimen, comparison to unirradiated references
- Nano-indentation on FeCrAlY/GESA coating
- Bending tests of reference samples: Behavior of the coatings under mechanical loading

SEM Inspection TiN coating, unirradiated

SEM Inspection TiN coating, irradiated to 1.8 dpa

c: surface facing to flowing LBE; d: surface facing to vacuum. No evident damage.

SEM Inspection FeCrAlY/GESA coating, unirradiated

With some micro-cracks and AI/Y oxides on surface

SEM Inspection FeCrAlY/GESA coating, irradiated to 2.5 dpa

surface facing to flowing LBE: slightly oxidized, no evident damage

EPMA Inspection TiN coating, irradiated to 1.8 dpa

Confirm SEM observations: no evident damage

EPMA Inspection FeCrAlY/GESA coating, irradiated to 2.5 dpa

Confirm SEM observations: no evident damage, AI/Y oxides on surface

Nano-indentation on FeCrAlY coatings

FeCrAlY-coated specimen: "In-situ" Bending test Reference sample

"In-situ" Bending test FeCrAlY/GESA coated specimen, unirradiated

"In-situ" Bending test

FeCrAlY/GESA coated specimen, irradiated to 0.48 dpa

"In-situ" Bending test

FeCrAlY/GESA coated specimen, irradiated to 2.5 dpa

Paul Scherrer Institut • 5232 Vil

"In-situ" Bending test

TiN coated specimen, unirradiated

ε_{out}≈8.8%

"In-situ" Bending test

TiN coated specimen, irradiated to 1.8 dpa

Conclusions

- 1) In the present experimental condition, no evident damage induced by either irradiation or LBE corrosion on both coatings, which suggests good compatibility of both coatings with LBE under irradiation.
- 2) The mechanical stability, or in other word the bounding of the coating layer with the steel matrix, looks good under the present irradiation condition, even at a rather high deformation level, e.g. 3-4% strain after irradiation.
- 3) The thickness of coating layer should be carefully selected to avoid large cracks which may result in LME.