10th International Workshop on Spallation Materials Technology October 18-22, 2010, Beijing, China

R&D on Mitigating Cavitation Damage in the Spallation Neutron Source Mercury Target

Bernie Riemer

SNS Target Development Team Leader

- Mark Wendel
- Dave Felde
- Ashraf Abdou
- Bob Sangrey

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Worst case scenario for severely shortened target life has not occurred

- First two target modules were run to more than 3000 MW-hrs
- Operation at MW power level is now typical

Focused goal of the R&D effort

 Develop sufficiently effective damage mitigation technologies such that cavitation is not the life limiting mechanism for the SNS mercury target – for any future beam power (2+ MW)

Elements of the effort

- Experimental, simulation and theoretical activities
 - Five full time and ~12 part time staff at ORNL
 - Subcontracts with universities and industries
 - Collaborations with JPARC and RAL
 - and ...

SNS Mercury Target Module — Mercury vessel surrounded by a water-cooled shroud

- Both have two layers at the beam entrance window
- Both made from type 316L stainless steel

Target #1 was replaced in July 2009 during a planned maintenance period

- No indications of a leak or any problem
- Radiation damage was estimated to be 7.5 dpa

Target Power History 5000 4500 4000 T1 - Total MW-hours: 3055 3500 T2 - Total MW-hours: 3215 3000 nours 2500 2000 1500 1000 500 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0 - 0.1 0.8 - 0.9 0.9 - 1.0 1.0 - 1.1 power range (MW)

Target #1: Two hole cuts were made 4 layers each cut location Specimens # 1, 5, 6 and 7 sent to Babcock & Wilcox for detailed examination and analysis

Worst damage was in inner mercury vessel window, center location, surface facing bulk mercury (#5)

7 Managed by UT-Battelle for the U.S. Department of Energy

PIE presentation by David McClintock

Two *primary* mitigation approaches:

<u>Protective gas walls</u> can isolate the vessel from the damaging effects of cavitation bubble collapse

- <u>Small gas bubble injection</u> can absorb the initial pressure pulse, reduce cavity growth, and attenuate pressure wave propagation
 - Volume fraction: requirement remains uncertain
 - Bubble diameters ca. 100 μm (also uncertain)
 - Alternate vessel materials and protective surface treatments have been studied
 Kolsterising® process adopted to enhance cavitation damage resistance

Gas wall mitigation

- Damage mechanisms from cavitation:
 - High speed fluid jets running into wall surface
 - Shock waves from bubble collapse
- A gas layer between the wall and the mercury can reverse the jets and protect the wall from shock waves

Three gas layer approaches

- Free Gas Layer gas is injected locally on the inside of the target wall
 - Very hard to get good coverage with SNS flow configuration
 - Possibly suited to sweeping mercury flow
- Porous Wall Gas layer a porous layer of material is used to distribute gas across the vulnerable boundary
 - Mercury intrusion in a practical target operation very difficult to control and will lead to problems
- Surface texturing features on vessel wall to enhance gas adhesion / holdup
 - Most promising with SNS flow configuration

Regimes of gas layer thickness

Target Test Facility with gas wall test section

Vertical Grooves

Conical Pits

Vertical Grooves

13 Managed by UT-Battelle for the U.S. Department of Energy

Can this work?

- Will this provide effective damage mitigation?
 - Damage test experiment using JAEA MIMTM device was a failure
 - *Driving* pressure wave mechanism was defeated by introduction of gas in test chamber; control surfaces were not damaged
 - In-beam experiment at LANSCE WNR^{*} in 2008 indicated partial gas coverage with cone type texturing was very effective
 - Only 100 beam pulses
- What is the required area for gas coverage?
 - This depends on lessons from PIE

The 2008 WNR experiment had two main areas of investigation

- Damage vulnerability of the SNS target cooling channel
- Damage dependence on beam intensity
- The experiment (sans the damage results) was described in detail at IWSMT-9 (J. Nucl. Mater. 398 (2010), p. 207-219)
- Results were presented at ICANS-XIX (paper in proceedings)
- Secondary objectives:
 - Gas wall mitigation with surface texturing enhancement
 - Long pulse test

Window Flow Vulnerability Test Loop (WFVTL) experiment

- Question: is a design change to SNS target to eliminate mercury channel necessary?
 - Previous in-beam test results for channel damage had indicated this region is especially vulnerable (high damaged area fraction)
- Investigated damage reduction vs. flow velocity
 - Previous in-beam test indicated damage *reduced by flow*

WFVTL target module and mercury loop

Test target module Nine damage test surfaces

- Variable speed centrifugal pump was employed for channel flow speeds for up to 4.4 m/s
- Channel flow connection to pump loop via flexible hoses
- Target test modules were exchanged between conditions
- Bulk mercury volume was stagnant

17 Managed by UT-Battelle for the U.S. Department of Energy

Front inside plate - channel side

W1 front bulk side example (worst overall damage)

100 pulses

19 Managed by UT-Battelle for the U.S. Department of Energy

Based the in-beam experiment results:

 Design changes to the SNS target to eliminate the mercury cooling channel – either by replacement with water or by bulk side cooling flow – were not recommended

Observed damage in SNS target #1 was consistent with this experiment

- Bulk side surface damage is much worse than channel
 - At the beam entrance window
 - Other areas remain uncertain

Bubble diagnostics

- Dynaflow Inc's Acoustic Bubbler Spectrometer (ABS)
- Boston University's acoustic void fraction resonator
- Univ. of Southampton's acoustic void fraction diagnostic
- Proton radiography
- Medical ultrasound
- Optical (at view ports)

Next WNR experiment will focus on small gas bubble mitigation

- Prior in-beam tests showed no better than 4x reduction in damage
 - Maybe ½ of that was from associated mercury flow
 - Bubble populations were not well characterized; bubbles too large
- Tests in MIMTM have shown ca. 15x reduction, but
 - Question regarding surface imposed pressure pulse, 0.5 ms rise time pressure vs. beam induced < μ s rise time pressure

A new mercury test loop: Multi Bubbler Test Loop (MBTL)

• Candidate bubblers are being evaluated for producing populations of potentially greater mitigation efficacy

MBTL in vapor controlled lab space

National Laboratory

24 Managed by UT-Battelle for the U.S. Department of Energy

Bubble generators

- Flow channel miter bends
- Univ. of Tennessee swirl bubblers

for the U.S. Department of Energy

SEM of <u>surface replicates</u>

Replicate is inverse of specimen

5-1 5-2 WD25.6mm 5.00kV 22-Sep-10 SE 3mm WD13.5mm 5.00kV 28-Sep-10 500um

26 Managed by UT-Battelle for the U.S. Department of Energy

Pit / surface morphology has similarities to ultrasonic horn damage in mercury

27 Managed by UT-Battelle for the U.S. Department of Energy

Fig. 3. SEM images of baseline 316LN specimen following 5.5 h sonication in Hg. (a) at top, pit-like surface relief on generally roughened surface; (b) middle, shows magnified view of the pit in the center of (a); (c) highest magnification, showing detail – similar to mechanical tearing – at the edge of the pit.

WNR & MIMTM damage morphology seems different ... dominant mechanism by jet impingement

WNR 100 beam pulse test WFVTL static Hg surface

MIMTM off-line damage test Static mercury

Fig. 2. Micrographs and 3D-images of pitting damage on SA316SS specimens.

M. Futakawa et al. / Jnl. Nucl. Mat. 356 (2006) 168-177

Current overall status

- Current push is on small gas bubbles
 - WNR experiment preparations underway
- Gas wall development has been taken far
 - Mitigation efficacy looks good from in-beam tests
 - Channel cooling concern is resolved
 - Partial gas coverage at beam window with SNS flow configuration is possible with surface texturing
 - Sweeping flow more amenable to GW
 - Wetting condition change over long term operation
 - PIE of targets is key to knowing <u>required extent of coverage</u>

Next

- Increasing emphasis and importance on PIE
 - Irradiated material properties also key to long target life
- MBTL / WNR irradiation now CY2011
- SNS power increasing
 - Proton energy upgrade to 1.3 GeV brings beam power to1.8 MW
 - AIPs -> up to 3 MW (to be shared with Second Target Station)
- Growing effort on next generation target conceptual designs
 - Incorporating gas wall, small gas bubbles and / or alternate flow configurations

