The effect of displacement damage and helium bubble on Eurofer97 steel tensile property

Z. Tong^a Y. Dai^b

a China Institute of Atomic Energy, Beijing 102413, China b Spallation Neutron Source Division, Paul Scherrer Institut, Switzerland

PAUL SCHERRER INSTITUT

Introduction

> Material and experiment methods

> Results

|百子能科学研究院

Discussion

Conclusion

Introduction

PAUL SCHERRER INSTITUT

RAFM steels are candidate materials for structural application in advanced nuclear energy systems

IWMST-10 Oct. 18-22, 2010 Beijing

中国原子能科学研究院

ADVANCED NUCLEAR SYSTEMS

	GFR	SFR	LFR & ADS	VHTR Thermal neutrons	SCWR Thermal neutrons	Fusion	
Coolant	He, 70 bar 480-850°C	Na, few bar 390-600°C	Lead alloys	He, 70 bar 600-1000°C	SC H₂O, 250bar, 280-500°C	He, Pb 80bar 17Li, 300- 480- 480°C 700°C	
Fuel	(UPu)C / O2 in plates of pins in hexagonal subassemblies	(UPu)O2 in pins in hexagonal subassemblies	Various concepts	Coated particles (SiC or ZrC) in a graphite matrix	UO ₂ enriched	Dual coolant blanket	
Core structures	SiC-SiCf composite or ODS (backup)	Cladding: ODS Wrapper: 9Cr Mart.Steel	Cladding: 9Cr Mart.Steel ODS Wrapper: 96r Mart.Steel	Graphite Composites C/C, SiC/SiC for control rods	Cladd. Aust Steel (Ni alloys?)	9Cr Mart.Steel, ODS SiCf-SiC	
Temperature	500-1200°C	390-750°C	350-480°C	600-1600°C	280-750°C	Up to 650°C	
Dose	60-90dpa	up to 200dpa	100dpa	7-25dpa	Several 10 dpa	100dpa + He	
Other structures Out of core	vessel & core struct: 9-12Cr Steels 350-500°C <<1dpa	prim/sec/steam circ.: 9-12Cr Steels 390-600°C	ADS target: 9Cr Mart.Steel 350-550°C 100dpa+He+H	N.A.	N.A.	N.A.	

IWMST-10 Oct. 18-22, 2010 Beijing

中国原子能科学研究院

25 mm thick plate

Element	Cr	Ni	Mo	Mn	Ti	V	Nb	W
Eurofer97	8.93	0.022	0.0015	0.47	0.009	0.20	0.002	1.07
Element	Та	Cu	С	Si	Р	S	В	Ν
Eurofer97	0.14	0.003	0.12	0.06	< 0.005	0.004	< 0.001	0.018

The heat number was E83697.

The steel was normalized at 980 °C for 27 min followed by air cooling,

Tempered at 760 °C for 1.5 h and followed by air cooling. Mean grain size: $16 \pm 2 \ \mu m$

Size effect on tensile properties

• Two kinds of specimen were selected for tensile test

The small sample with 0.4 mm thickness The large sample with 0.75mm thickness Both of them have a 5mm gauge length

Tensile results comparison between small sample and Large sample

Eurofer 97

Irradiations at SINQ (STIPs)

STIP program is aiming at studying radiation damage in structural materials under a mixed spectrum of high-energy protons plus spallation neutrons.

Irradiation parameters:

- beam energy: ~ 570MeV
- irradiation temperature: 100 550 °C
- irradiation dose: max. 20 dpa
- **>** He concentration: max. 1750 appm

Tensile test of STIP III specimens

- Materials: Eurofer 97 steel Tensile rate: 0.3mm/m
- Irradiation dose: 7-20 dpa
 Test temperature: 25-450°C
- He concentration: 520-1700 appm
- Irradiation temperature:200-510°C
- Specimen dimension:

Results — Tensile test (RT) PAUL SCHERRER INSTITUT

IWMST-10 Oct. 18-22, 2010 Beijing

Tensile Test Results

Sample	T _{irrad.}	Dose	He	T _{Ann.}	T _{test}	YS	US	UE	TE
No.	(°C)	(Dpa)	(appm)	(°C)	(°C)	(MPa)	(MPa)	(%)	(%)
C10	240	7.2	525		25	954	956	1.16	3.82
C22	250	7.2	525	600	25	776	868	7.27	14.33
C07	415	11	805		25	830.2	961.6	4.45	9.95
C09	415	11	805	600	25	825.4	937.8	7.79	14.53
C05	695	15.3	1220		25	816.6	887.2	4.91	6.77
C04	615	15.3	1220	600	25	904.7	981.7	6.15	10.28
C12	240	7.2	525		400	804.9	809.4	0.91	4.83
C11	265	7.2	525		450	636.9	646.8	0.99	7.42
C19	445	11	805		450	619.8	646.8	2.52	7
C18	660	15.3	1220		450	706.2	718.8	1.73	6.07
C15	805	19.6	1650		450	681.4	705.5	1.96	2.78

中国原子能科学研究院

Microstructure Results — Defect Clusters

中国原子能科学研究院

a) 7.5dpa/162°C, b) 10.7dpa/235°C, c)15.2 dpa/307°C, d) 17.6dpa/400°C, e) 20.4dpa/511 °C, f) BF 20.4 dpa /511°C, ×40000

TWMST-10 OCt. 18-22, 2010 Beijing

Microstructure Results —Helium Bubble

中国原子能科学研究院

Eurofer 97 TEM Photos for helium bubble, a) 9.6dpa, b) 12.6dpa, c)17.3dpa, d)20.4dpa

IWMST-10 Oct. 18-22, 2010 Beijing

Microstructure Results

Materials	Sample No.	Tirrad (°C)	Dose (dpa)	He (appm)	Bubble size (nm)	Bubble density (10 ²³ /m ³)	Cluster size (nm)	Cluster density (10 ²² /m ³)
F82H	D01L	153	6.3	410				
	D04L	213	9.8	705	1.27	6.23	7.27	3.59
	D04H	294	13.3	1020	1.28	8.45	13.58	1.31
	D09H	390	17.6	1445	1.78	6.43	14.4	0.61
	D12H	453	20.3	1725	2.3	5.14	12.29	0.83
Eurofer97	C10L	162	7.5	505			7.5	3
	C07L	235	10.7	785	1.17	2.86	7.19	2.53
	C07H	307	15.2	1195	1.58	6.12	8.04	2.32
	C04H	400	17.6	1445	1.85	5.0	15	0.21
	C15H	511	20.4	1740	2.49	4.6	17.3	0.16

IWMST-10 Oct. 18-22, 2010 Beijing

中国原子能科学研究院

Discussion—Irradiation Hardening

IWMST-10 Oct. 18-22, 2010 Beijing

Discussion—Defect clusters AUL SCHERRER INSTITUT

1E24 F82H present work Eurofer97 present work T91 present work T_{irrad.}<300°C T91 from reference 1E23 F82H from reference Defect density (m^{-/}) 390°C 453°C 1E22 360°C 374/C 475°C 1E21 511°C 400°C 450°C 450°C 528°C 2 8 18 20 22 24 10 12 16 0 Δ 6 14 Dose (dpa)

Reference: X. Jia, Y. Dai / Journal of Nuclear Materials 318 (2003) 207 - 214

中国原子能科学研究院

26

Discussion—Helium bubble us scherrer INSTITUT

中国原子能科学研究院

Helium bubble calculation in ferritic martensitic steels

IWMST-10 Oct. 18-22, 2010 Beijing

Discussion—Irradiation effect scherrer Institut

Conclusion

国原子能科学研究院

PAUL SCHERRER INSTITUT

Eurofer 97 steel was irradiated in STIP-III to doses between 6.5 and 20.4 dpa at temperatures ranging from ~120 to ~510° C. Tensile tests were conducted at 25, 400 and 450° C. TEM observations were performed on 1 mm discs punched from the grip sections of the tensile specimens tested at 25° C. The main conclusions drawn from the results are as the following:

(i) Radiation-induced defect clusters and small dislocation loops were observed in specimens irradiated to lower doses at lower temperatures. In specimens irradiated at higher temperatures > ~400° C, much less clusters or loops were observed. He-bubbles were seen in specimens irradiated to \geq 9.5 dpa / 680 appm He at \geq 260° C. But the size of the bubbles did not increase so much with increasing irradiation dose as observed in the previous work, which should be attributed to the high-density bubbles nucleated at low temperatures during the first irradiation period.

Conclusion

- (ii) Not only the specimens irradiated at lower temperatures $< ~350^{\circ}$ C, but also those irradiated at higher temperatures above > 400° C show significant hardening effect. The hardening observed in these specimens should be attributed to the hardening effect of He bubbles.
- (iii) The three FM steels show great similarity in tensile properties under similar irradiation and testing conditions, except for the brittle fracture observed from two F82H specimens of 17.4 and 20.2 dpa tested at 25° C, which was not detected for the T91 and Eurofer 97 steels.

中国原子能科学研究院

Thanks for Your attention!

IWMST-10 Oct. 18-22, 2010 Beijing

Helium Bubble Volume Fraction CHERRER INSTITUT

中国原子能科学研究院

Introduction

Generation I

中国原子能科学研究院

Prototype Reactor

1985

Commerical Power Reactor

Generation III

Advanced Power Reactor **Generation IV**

SCWR,VHTR,MSR SFR,LFR,GFR

Fusion reactor

Fission reactor

ITER 0 Oct. 18-22, 2010 Beijing