Advanced Experimental Techniques for Assessing Microstructural and Mechanical Changes Induced by Irradiation

Kenji Kikuchi, Stuart Maloy

Microstructural Analysis Techniques

- Typical
 - Optical Metallography
 - Transmission Electron Microscopy (TEM)
 - X-ray Diffraction (XRD)
 - Scanning Electron Microscopy (SEM)
- Advanced
 - FIB prepared
 - Atom probe
 - _ TEM
 - SANS
 - Texture Analysis
 - Neutron Reflectrometry
 - Positron Annihilation

Spectroscopy

In Situ Measurements –
(e.g. MaRIE)

Nuclear Energy

The Materials Test Station is planned to be a fast spectrum fuel and materials irradiation testing facility

- MTS will be the only fast spectrum irradiation facility in the Western Hemisphere and Europe
- MTS will be driven by a 1-MW proton beam delivered by the LANSCE accelerator
- MTS will have 1/3 to half the peak flux of the world's leading research fast reactors
- Cost range is \$60M to \$90M, and can be operating as soon as 2016

The use of Pb-Bi as a fuel and target coolant allows prototypic irradiation temperature

Nuclear Energy

High fluence, high energy, low divergence X-ray sources offer the potential of placing detectors far from the sample

Technological challenges include:

- Detector operation in high radiation fields
- ■X-ray source definition
- Sample handling and temperature control

Concept for inserting samples into MTS "in situ" location using a transfer cask and X-Ray scattering geometry

Frontier experiments identify performance gaps that form the basis of MaRIE's functional requirements

Measuring stress on fuel cladding under irradiation

Performing fatigue experiments under irradiation

- Emergent Phenomena in Complex Materials
 - Ultrafast (10–100 fs) measurements in Extreme Environments

Mechanical Testing Techniques

Typical

- Tensile (16 x 4 x 0.75 mm)
- Toughness (12.5 x 2 mm)
- DBTT (Charpy, 3 x 4 x 27 mm)

Advanced

- FIB prepared
 - Microcompression
 - Nanohardness
- In Situ Creep (w/nanohardness?)
- In situ fatigue
- Microtensile?
- Microbend?

