SANS and TEM investigation of phase precipitation in HT-9 at high neutron irradiation dose levels

J. Van den Bosch, O. Anderoglu, S.A. Maloy

Los Alamos National Laboratory

Funded by DOE office of NE

UNCLASSIFIED

Acknowledgements

Hot cell work: T. Romero

SANS: P. Hosemann, M. Hartl, R.P. Hjelm

FIB: P. Dickerson

TEM: R. Dickerson, D. Bhattacharyya

FCRD Project management & mentor: S. Maloy

Outline

Introduction

- Background and motivation
- ACO-3 duct

SANS & TEM analysis of the ACO-3 duct

- SANS measurements at LANL's Lujan Center
- SANS and TEM results

Summary

Gen IV reactors demand materials resistant to irradiation

FCRD program's objective

http://www.ne.doe.gov/geniv

Increase in Cr content suggests an increase in Ductile to Brittle Transition Temperature (DBTT)

UNCLASSIFIED

Theoretical calculations on the formation of α

G. Bonny et al., Scripta. Mat. (2008)

UNCLASSIFIED

ACO-3 duct

FFTF, Hanford site, WA

H. Sencer et al. JNM (2009)

Slide 7

UNCLASSIFIED

Phases expected to form in HT-9

	Before irradiation						After irradiation							
	Precipitate	Density (m ⁻³)		Avg. Dia. (nm)		Precipitate			References					
HT-9 heat 84425	M ₂₃ C ₆ MC	1	7.1×10^{19} 1.6×10^{18}		() () () () () () () ()	α' G $M_6C(\eta)$ χ Laves MC $M_{23}C_6$ $Cavity/bubble$			Kai et al JNM 96; Mathon et al JNM 03 Gelles JNM 96; Sencer et al JNM 09 Dubuisson et al JNM 93 Gelles JNM 96; Kai et al JNM 96 Gelles JNM 96 Kai et al JNM 96					
	С	N	Cr	Mo	Mr	n	Si	Ni	i	V	Nb	W	Ta	
HT-9 Heat 8442	5 0.21	-	11.8	1.03	0.50	60	0.21	0.5	1	0.33	-	0.52	-	

Structural and compositional details of phases expected to form in neutron irradiated HT-9

- α ': Local enrichment of Cr (BCC), coherent with the bcc Fe matrix.
- G: Has the ideal stoichiometric composition of Ti₆Ni₁₆Si₇. Many variations are possible: Ti is replaced by Mn, V, Nb, Ta,. Zr, Hf, or Cr. In some cases, Fe and Mo substitution for Ni has been observed; e.g. Mn₇Ni₁₆Si₇
- x : Chi phase, is a bcc structured Fe-Cr phase enriched in Cr and Mo compared to the matrix: e.g. Fe₃₆Cr₁₂Mo₁₀
- Laves: Laves phase has the composition AB₂ and has a cubic or hexagonal structure. In T91 or HT9, it mostly comprises of Fe₂Mo formed under irradiation at high temperature (>500° C).
- M_6 C (η or Eta phase): The M_6 C (η) phase is a carbide with a diamond-cubic (E9, Fd3m) structure.

Outline

- Introduction
 - Background
 - Objective
 - ACO-3 duct
- SANS & TEM analysis of the ACO-3 duct
 - SANS measurements at LANL's Lujan Center
 - SANS and TEM results
- Summary

SANS at LANL's Lujan Center

UNCLASSIFIED

SANS analysis of the ACO-3 duct indicates formation of precipitates increases with decreasing temperature

A-ratio calculation and selected values of phases

A-ratio: the ratio between scattered intensities perpendicular and parallel to the sample magnetization.

For chemically and magnetically homogeneous particles, it is then given by: (assuming form factor P(Q) is the same for nuclear and magnetic contributions)

$$A = \left(\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}\right)_{\perp \vec{H}} / \left(\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega}\right)_{//\vec{H}} = 1 + \left(\frac{\Delta\rho_{\mathrm{mag}}}{\Delta\rho_{\mathrm{nucl}}}\right)^{2}$$

Examples:

• M₂₃C₆ (Cr_{0.65}Fe_{0.35}): 3.5

Vacancy clusters or voids: 1.0-1.4

• α' Cr precipitates: 2.03-2.13

(taking into account the average magnetic moment: μ =2.20-2.39 C_{Cr})

• Cr-13Mo-8Fe-3Si: 2.35

(measured by Gelles and Thomas in HT9 following neutron irradiation at 425° C to high dose)

2 dpa, 505° C zone

- No voids or radiation induced second phase particles observed in TEM;
- M₂₃C₆ decorating grain and lath boundaries;
- SANS confirmation of negligible scattering after subtraction of reference sample;
- A-ratio ~3 at low Q indicates carbide coarsening.

UNCLASSIFIED

2 dpa, 505° C zone: EFTEM images

UNCLAS

92 dpa, 466° C zone

- No voids observed;
- M₂₃C₆ decorating grain and lath boundaries;
- Dislocations/high density of interstitial loops
- A-ratio suggests dominant presence of Cr-rich precipitates.

UNCLASSIFIED

92 dpa, 466° C zone

Guinier-Porod fit of both nuclear scattering and magnetic scattering indicates:

- Bimodal particle distribution
- Very small contribution
 of small smooth hard spheres
- Larger irregular spheroid particles
- Larger particles of ~ 90 nm dia.
- Small particles/defects of ~ 11 nm dia.

Los Alamos NATIONAL LABORATORY

92 dpa, 466° C zone: **EFTEM** images

UNCLASSIFIED

155 dpa, 440° C zone

- Average void size 42 nm, ~0.3% swelling;
- Not yet in steady state swelling regime
- G-phase found in grains (see next slide);
- A-ratio indicates Cr-rich precipitates dominant

UNCLASSIFIED

155 dpa, 440° C zone: G-phase particles

G-phase (Mn₆Ni₁₆Si₇): d_{111} = 6.45 Å; d_{311} = 3.37 Å Ref. Yan *et al.*, JAC (2009) 152-155.

155 dpa, 440° C zone: G-phase particles

Yan et al., J. Alloys and Compounds 469 (2009) 152–155: Mn6Ni16Si7 Gelles, Thomas, FR conference (1983): Ni-24.1Fe-12.7Si-8.7Mn-3.8Mo-1.9Cr. Klueh and Harries (2001): Mn7Ni16Si17

UNCLASSIFIED

155 dpa, 440°C zone: dislocations

- Total network dislocation density ((a/2)<111> + a<100>): 3x10¹⁵ m⁻²
- (a/2)<111> dislocation (dominant) density: 2.2x10¹⁵ m⁻².
- Loops predominantly a<100> type, density: 5x10²⁰ m⁻³.

155 dpa, 440°C zone: voids

- Estimated mean void swelling ~0.3%
- Based on a measured cavity number density of 2.5x10²⁰ m⁻³.

H. Sencer et al. JNM (2009)

UNCLASSIFIED

155 dpa, 440°C zone: EFTEM images

- Mn, Ni, and Si jump ratios
- Particles at the boundaries are Cr rich carbides (M₂₃C₆)
- Loops are not seen in any of the EFTEM images.

100 dpa, 410° C zone

- Average void size 23 nm;
- Not yet in steady state swelling regime;

10⁻¹

Slide 25

A-ratio

100 dpa, 410° C zone

Guinier-Porod fit of both nuclear scattering and magnetic scattering indicates:

- Bimodal particle distribution
- Small smooth hard spheres
- Larger irregular spheroid particles
- Large particles of ~ 74 nm dia.

Small particles/defects of ~ 10 nm dia.

Corresponding to G-phase sizes observed in TEM

100 dpa, 410° C zone: EFTEM images

UNCLAS

100 dpa, 410° C zone: G-phase

G-phase (Mn₆Ni₁₆Si₇): d_{111} = 6.45 Å; d_{331} = 2.56 Å Ref. Yan *et al.*, JAC (2009) 152-155.

UNCLASSIFIED

20 dpa, 380° C zone

- High density of dislocation pinning particles or defects;
- Scattering curve shows significant increase of scattering in the 1-5 nm size range (to be identified by TEM)

Slide 29

 $Q(^{-1})$

20 dpa, 380° C zone

Guinier-Porod fit of both nuclear scattering and magnetic scattering indicates:

- Bimodal particle distribution
- Smooth hard spheres
- Large particles of ~ 72 nm dia.
- Small particles/defects of ~ 7 nm dia. 0.1

Outline

Introduction

- Background
- Objective
- ACO-3 duct

SANS & TEM analysis of the ACO-3 duct

- SANS measurements at LANL's Lujan Center
- SANS and TEM results

Summary

Summary and Conclusions

- A duct of HT9 irradiated up to 155 dpa over a period of 6 years in FFTF was analysed by SANS and TEM;
- The high temperature, low dpa zone (505° C, 2 dpa) showed no alterations of microstructure or presence of irradiation defects.
 SANS indicates probable carbide coarsening;
- High dpa, medium temperature zone (410-440° C, 100-155 dpa) reveal presence of G-phase and voids (not yet steady state swelling regime).
 SANS indicates dominant presence of Cr-rich precipitates;
- Low temperature, intermediate dpa zone (380° C, 20 dpa) shows high density of dislocation pinning particles or irradiation defects. SANS indicates a large increase in scattering in the 5-7 nm size range;
- Detailed TEM (HR-TEM, STEM, EFTEM) is ongoing to fully characterize microstructure and support better understanding of SANS results.

