Effect of Cold Working on the Corrosion Resistance of JPCA Steel in Flowing Pb-Bi at 450°C

Abu Khalid Rivai, Shigeru Saito, Obayashi Hironari, Masao Tezuka, Chiaki Kato, Kenji Kikuchi

JAEA - Japan Atomic Energy Agency

IWSMT10, Beijing-China, October 18-22, 2010

Motivation Concept Purpose Experiment and Procedure **Results & Discussion** Conclusions

Motivation Concept

LBE (Pb-Bi eutectic) is the candidate for ADS (Accelerator Driven System) spallation target and core coolant (JAEA's design).

Materials Issues:

1.Corrosion attack of Pb-Bi to metals.

2.Hydrostatic pressure of Pb-Bi.

3.Protons bombardment to beam window.

Developing Solutions:

- JPCA steel: the candidate material for the proton beam window.
- 2. <u>Cold worked-JPCA</u> <u>steel:</u>

expected to be stronger to endure protons bombardment and Pb-Bi`s pressure.

Motivation Concept

Cold working (austenitic steel) process induces:

- 1. Increasing the strength and hardness.
- 2. Dislocation movement within the crystal.
- 3. Transformation from fcc austinite (γ) to bcc martensite (α `, magnetic).

To investigate the effect of cold working on the corrosion resistance of JPCA steel in flowing Pb-Bi at 450°C of temperature and 1 m/s of flow velocity.

Experimental & Procedure

	200		
_		EA	\mathcal{D}
	(ler	E	\mathscr{P}
	-	-	

Parameter	Conditions		
Type of liquid	LBE (Pb-Bi eutectic)		
Flow velocity (m/s)	1		
Temp. of hot and cold part (°C)	450 and 350		
Oxygen concentration (wt.%)	~10 ⁻⁸ - ~10 ⁻⁹		
Time immersion (hrs)	1000		
Materials	20% Cold worked (CW)-JPCA No CW-JPCA (as comparison)		

JPCA-Chemical Compositions (wt.%)												
Fe	Ni	Cr	Мо	Mn	Si	Ti	С	В	Р	Со	S	N
Balance	15.50	14.50	2.50	1.50	0.50	0.25	0.055	0.004	<0.035	<0.02	<0.01	<0.01

Experimental & Procedure

JAE/

JLBL-1 (JAEA Lead-Bismuth Loop for material corrosion)

Results & Discussions

Results: SEM-EDS

Results: EDS (mapping)

Results: AFM - KFM*

*Alternating voltage is applied to a conductive cantilever. The electromagnetic forces acting between the sample surface and the cantilever are detected to measure the potential across the sample surface.

JAE

Results: AFM - KFM

JPCA (no CW) Adhered Pb-Bi 10.00 324.63 nm C Bulk 5.00 0.00 5.00 D 10.00 A-B 0.00 300.00 [nm] 0.00 15.00 [µm] 0.00 Height In Width [um]

	width [µm]	incigne [init]	
х-х	5.71	171.51	
X-X	0.53	8.75	
			Ī

-D 300.00 [nm]				
0.	00	15.00 [µı		
Width [µm]		Height [nm]		
X-X	0.57	230.43		
X-X	5.71	221.15		
х-х	1.90	53.85		

20%CW-JPCA

Results: AFM – MFM*

*A magnetized probe is scanned at a constant distance from the sample surface. Magnetic forces due to the leakage field are detected and magnetic information about the sample surface is displayed visually.

Discussion: Effect of Cold Working

*Porter DA, Easterling KE, "Phase transformations in metals and alloys", 2nd edition: Chapman & Hall, London, 1993.

Corrosion behavior of 20%CW- JPCA and SA-JPCA in flowing Pb-Bi at 450°C for 1000 hours

Parameter	20% CW–JPCA	No CW–JPCA
Ferritization	-	\checkmark
Oxide layer	✓.	-
Pitting	✓ (localized)	-
Penetration of Pb-Bi	✓ (localized)	✓.

(JAEA)

- In the present study, superficial ferritization accompanied with penetration of Pb-Bi through the ferrite layer occurred for JPCA without cold working.
- On the other hand, dissolution attack occurred only partially (localized superficial pitting) for the 20% cold worked-JPCA steel with no ferritization observed. Therefore, cold working limited a dissolution attack from flowing Pb-Bi. However, for the beam window material application the pitting corrosion problem has to be solved.

Thank you for your attention