IWSMT-10 October 18-22, 2010 Beijing, China

Effects of Alloying Elements on Thermal Desorption of Helium in Ni Alloys

Reactor Research Institute, Kyoto University

Q. Xu X.Z. Cao K.Sato T. Yoshiie With the development of spallation target technology, interest in the behavior of helium in solids has increased Damage and He production in 316 steel

	Irr. environment	Damage (dpa/y)	He (appm/y)
	Fusion neutrons	32.1	465
HFIR	Fission neutrons	36	2187
EBR-II	Fission neutrons	39.2	15.1
	SNS SB*	34	3000
-			* 1111 277 (000)

*:JNM 377 (2008) 275

- \checkmark Promotion of dislocation loop
- ✓ Promotion of void swelling
- \checkmark degradation of ductility and thermal conductivity

Object : find materials with low helium retention and/or better resistance to He bubble formation

Effect of Alloying Elements on Void Formation in Ni

Neutron irradiation to 0.11dpa at 573K

Dose dependence of microstructures in Ni-2Sn

Fission neutron irradiated Ni-2at%Sn at 573K

Positron Lifetime in Neutron Irradiated Ni and Ni-2Sn Alloys

Lifetime of 1V ~180 ps

Ni-Si alloy

Interstitials will be trapped by undersized element Si easily. With increasing dose, a large amount of trapped interstitials and their clusters will be formed. They work as an effective site for the annihilation of freely migrating vacancies, and suppress the growth of microvoids .

Ni-Sn alloy

Largely oversized element Sn may trap interstitials and vacancies. As a result, the formation of interstitial-type dislocation loops and voids is suppressed due to the recombination of interstitials and vacancies at defect sinks of Sn.

Experimental Procedure

Materials: Ni, Ni-2Si, Ni-2Sn

Irradiation: Well annealed specimens were irradiated with 5 keV He⁺ ions using a gun, in which mono-energetic He⁺ ions were collimated and mass-analyzed (5x10¹⁹/m²) 。

Temperature: 723K

Post Irradiation Experiments:

- helium thermal desorption : thermal desorption spectroscopy (TDS) analysis
 Temperature : RT~1523K
 Ramping rate of the temperature : 1K/s
- TEM observation

Ion Injector with Low Energy and TDS

Electric furnace

Quadruple mass analyzer

Ion Injector

TDS

He Thermal Desorption in Ni, Ni-Si and Ni-Sn

irradiated by 5 keV He⁺ ions to 5.0×10^{19} He⁺/m² at 723 K

Microstructures in Helium Irradiated Ni

Irr. at 723KAnneal at 1223KSubsequent annealing
at 1373 K for 5 min

Microstructures in Helium Irradiated Ni-Si

Irr. at 723K

Anneal at 1243K for 5 min

Microstructures in Helium Irradiated Ni-Sn

Irr. at 723KAnneal at 1103KSubsequent annealing
at 1323 K for 5 min

He Trapping Sites for Ni and Ni Alloys

To investigate the effects of alloying elements Si and Sn on helium retension in Ni and its binary alloys, Ni, Ni-Si and Ni-Sn were irradiated by 5 keV-He ions at 723 K.

• The helium trapping sites were cavities in Ni and Ni-Si alloy, and both dislocations and cavities in Ni-Sn alloy.

• Compared with nucleation and growth of cavities in Ni, the addition of an Si or Sn alloying element suppressed the nucleation and growth of cavities.