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演示者�
演示文稿备注�
Thank you the chair man  and thanks for the opportunity to have the plenary talk here.  �
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Upgrade schedule

Recently, we reconsidered the upgrade schedule based on operational 
experiences regarding with accelerators.
Unexpected beam loss at RCS, etc. Improvement is needed. 
In a few year, we will have 0.3 MW beam on the target.



Pressure wave & Pitting issues 
for High Power Mercury Target
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1997   ASTE pressure wave measurement (JAERI) 1997   ASTE pressure wave measurement (JAERI) 
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2001   Pitting damage was confirmed in2001   Pitting damage was confirmed in--beam tests (ORNL)beam tests (ORNL)
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Struggle to find suitable bubbler in mercuryStruggle to find suitable bubbler in mercury
20052005 WNR test on bubbling effect (ORNL & JAERI, ESS) WNR test on bubbling effect (ORNL & JAERI, ESS) 
20082008Swirl bubbler to form fine bubbles in flowing mercury (Tsukuba Swirl bubbler to form fine bubbles in flowing mercury (Tsukuba UnivUniv.).)
2009 SNS target reached 1MW operation & 2009 SNS target reached 1MW operation & PIE of real target.PIE of real target.

演示者�
演示文稿备注�
First of all, I would like to look back the history of pitting issue in pulse neutron sources.  �
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演示者�
演示文稿备注�
Pressure wave problem and cavitation problem were predicted by G. Baure and J. Carpenter in 95 and 96.

Relating to the pressure waves, ASTE was carried out under the international collaboration.

2000, the pitting was observed by mechanical impact pressure test at JAERI.

This is the first observed pitting monster.   �
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演示者�
演示文稿备注�
We made a lot of effort to know what is pittig monster and how much violent to realize the high power pulsed spallation source.

At JAERI, by using the newly developed impact pressure machine, MIMTM, we obtained the damage formation behavior over 10 million pulses cycles.

Like that:�



Pitting formation by MIMTIM

Pitting damage data are accumulated up to over 10 million
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演示者�
演示文稿备注�
It was found that the damage was distinguished over 1 million impacts and cracks was recognized on the surface, and so on.�
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演示者�
演示文稿备注�
So, we were going to the next stage to fight the pitting monster.

Small bubbles injection is effective and detailed condition was estimated numerically.�
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演示者�
演示文稿备注�
We understand the mitigation mechanism due to micro-bubbles:

Absorption, attenuation and suppression which are dependent on the bubble conditions.�
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演示者�
演示文稿备注�
After that we straggled to find suitable bubbler to make small bubbles in mercury, not conventional water.�



Swirl bubbler to form fine bubbles Swirl bubbler to form fine bubbles 
in flowing mercuryin flowing mercury
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Bubble formation at a swirl bubbler

Taken by Prof. Kyoto

遣QuickTime?
闘恚蓈社蒓赦赡 

菣潜敲蓅蒒蒨缮蔷濠侨菫墙菂钦颣髒黔菑臖

遣QuickTime?
汕臶蒝舍伸 闘恚蓈社蒓赦赡 JPEG OpenDML 

菣潜敲蓅蒒蒨缮蔷濠侨菫墙菂钦颣髒黔菑臖

演示者�
演示文稿备注�
Finally, we found the suitable bubbler from the viewpoint of installation at mercury targets. The swirl bubbler forms the bubbles with 10 m in diameter in mercury.�
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演示者�
演示文稿备注�
Last year, we had seen the pitting damage under real mercury target operated condition.

�



Operational horizontal direction

Specimen diameter: 60 mm 
Largest hole: 9.2 x 2.1 mm ;

area ~ 11.5 mm2

Hg vessel to shroud gap
(helium filled): 1.2 Š 3.0 mm

Hg vessel inner to outer window gap: 1.5 Š 2.5 mm
Hg vessel Inner & outer wall thickness: 3.0 mm

by B. Riemer  ICANS XIX, 2010

Damage dependence on position

演示者�
演示文稿备注�
We could learn very important information and confirm what we predicted so far.

Already you know from Bernie’s talk. �



0.35 m/s isosurfaces of 
instantaneous velocity

Mercury flow @ 270 rpm

Damage difference by flowing ?

Mercury stream line
Stagnant area at center

by B. Riemer  ICANS XIX, 2010

演示者�
演示文稿备注�
Flowing effect on the damage, etc.�



Mitigation techniques for damages 
due to pressure waves

Direct protection of beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves
Flattening beam profile

Micro-bubbles injection

Flowing effect

演示者�
演示文稿备注�
From now on, I would like to talk about mitigation techniques that we have been developed and confirmed.

Mitigation techniques are broadly divided into two categories: one is protection for beam window, another is reduction of pressure waves, by using these techniques. �



Mitigation techniques for damages 
due to pressure waves

Direct protection of beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves
Flattening beam profile

Micro-bubbles injection

Flowing effect

演示者�
演示文稿备注�
OK, for direct protection we considered the surface treatment for the beam window. �
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演示者�
演示文稿备注�
For the protection of beam window, we investigate many surface improvements and coatings, like that.

These results show the surface degradation due to one million pulses using MIMTM.

From these results, we could confirme Kolsterising and Plasma nitriding are suitable to increase resistance against pitting damage.

   �
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演示者�
演示文稿备注�
Also, we evaluated the radiation damage on both surface treatment by using triple ion beam irradiation.

The hardness of substrate , 316, was changed except for the 50 % cold work.

On the other hand, the hardness of Kolsterising and Nitdriding surface layer were not changed by the irradiation.   �
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演示者�
演示文稿备注�
This tendency is understandable from the microstructure, taken by the TEM observation.

20 %CW exhibited a lot of change due to irradiation, that is dislocation loop formation.

But, 50 % CW almost NO change.



�



Kolsterise  Unirradiated Kolsterise  Irradiated

Nitride  IrradiatedNitride  Unirradiated

50 nm 50 nm

50 nm 50 nm

D
is

lo
ca

tio
n 

Lo
op

Fo
rm

at
io

n
N

o 
C

ha
ng

e

Microstructure change due to irradiation

Martensite induced by nitiriding is
dominant regardless of w/o irradiation.

Dislocation line

Dislocation loop

演示者�
演示文稿备注�
In the case of Kolsterising, the number of dislocation loop was slightly increased by the irradiation. On the other hand, Nitriding surface layer  is hardly changed by the irradiation.



These treatment was applied to the SNS target and JSNS target vessels, respectively.

 



    �



Mitigation techniques for damages 
due to pressure waves

Direct protection of beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves
Flattening beam profile

Micro-bubbles injection

Flowing effect

演示者�
演示文稿备注�
Next is the flowing effect. This was confirmed by off-beam and in-beam tests, and also by the real SNS target. Can say that ?

Anyway,

  �
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Flowing effect on damage

演示者�
演示文稿备注�
This is typical results relating with the flowing effect to reduce the damage, which was obtained from the off-beam tests using MIMTM.



Mercury flowing velocity was changed: stagnant, 0.3 m/s and 1.0 m/s.



Clearly, we can understand the flowing effect to reduce the damage. 

  �
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Micro-jet impact angle is inclined, 
because the growth behavior is 
affected by the flowing. Tanaka, et al, CAV2006CAV2006 (2006) (2006) 

Effect of flowing on bubble collapse behavior

遣QuickTime?
闘恚蓈社蒓赦赡Microsoft Video 1 

菣潜敲蓅蒒蒨缮蔷濠侨菫墙菂钦颣髒黔菑臖

演示者�
演示文稿备注�
What mechanism was considered to reduce the damage.

This simulation is to describe the bubble growth and collapsing behavior.

The bubble is distorted during growing by the flowing and collapsing impact become smaller than that without flow.



But, still we need detailed analysis to quantitatively estimate the effect on the damage.

 



  

�



Mitigation techniques for damages 
due to pressure waves

Direct protection of beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves

Flattening beam profile

Micro-bubbles injection

Flowing effect

演示者�
演示文稿备注�
The next category is to reduce the pressure wave.



Micro-bubble injection is one of prospective ways to mitigate pressure waves.



  �



What is expected by introducing 
micro bubbles?

Pressure
wave

Thermal
expansion

Decrease of pressure rise

Kinetic
energy

Thermal
energy

Thermal diffusion

Attenuation of pressure waves

Dispersion of pressure waves

Thermal, Viscous and Acoustic dampingAbsorption of thermal expansion

演示者�
演示文稿备注�
Micro-bubble is expected to decrease pressure rise and attenuate pressure waves.



Thermal expansion due to proton beam injection was absorbed by the contract of small bubbles.



The pressure wave will be attenuated by thermal, viscous and acoustic damping and dispersion.  �



Influence of the elasticity of the solid wall on 
the pressure wave  in liquid mercury

τ [μs]

t r

σ

 

[mm]
Time Space

Profiles of heat generation

Mercury Solid wall (316SS)

The density of liquid mercury is greater than the density of the solid wall (316 
Stainless Steal). The influence of the elasticity of the solid wall in the thermal 
expansion of liquid mercury is examined.

Inertia effect

遣QuickTime?
闘恚蓈社蒓赦赡 

菣潜敲蓅蒒蒨缮蔷濠侨菫墙菂钦颣髒黔菑臖
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演示者�
演示文稿备注�
Indeed, we have to consider tensile pressure rather than compressive pressure. The tensile pressure is associated with cavitation inception.



In the mercury target, mercury density is larger than solid wall.　The Inertia effect of mercury Is not ignored. Then, ｔhe Influence of the elasticity of the solid was examined numerically.

 



 �



No-bubble

Influence of the elastic solid wall 
on pressure wave

遣QuickTime?
闘恚蓈社蒓赦赡 

菣潜敲蓅蒒蒨缮蔷濠侨菫墙菂钦颣髒黔菑臖1.0, 2.5 mm wall
12 J/cc

Strong tensile pressure is induced due to inertia effect which was enhanced by the 
low stiffness of solid wall. On the other hand, compressive pressure along the wall 
was reduced by the low stiffness.
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演示者�
演示文稿备注�
These results are typical one to explain how much the elastic wall influences on pressure waves. The thickness of solid wall was changed 

1 mm and 2.5 mm, and rigid.



This figure shows the pressure responses along the solid wall.

Compressive pressure was changed by the stiffness of wall, and in the case of rigid, the tensile pressure dose not appear and the compressive pressure becomes small if the stiffness small.



On the other hand, at 4 mm from the wall, relatively large tensile pressures appear in the case of elastic wall.        �
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Effect of bubble void fraction 
on pressure waves

No-bubble Vf = 5x10-3@50μm

A B

Compressive pressure :  A>C>B due to absorption
Tensile pressure           :  A>B>C due to attenuation

Compressive pressure is reduced well by absorption of thermal expansion.Tensile 
pressure is influenced by the bubble dynamics with viscous and thermal damping 
and dispersion.    

Wall thickness: 2.5 mm, Measuring point: 0〜5mm
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演示者�
演示文稿备注�
These figures show the effect of bubble void fraction on pressure waves.

The measuring points are varied from 0 to 5 mm, and the void fraction was changed no-bubble and 5 x 10-3 and 10-5.

We believed that 5x10-3 is the golden number to mitigate the pressure wave, for the compressive pressure, it is YES ! 

But, the most interesting point is the tensile pressure was mitigated by even small void fraction about 10-5. Of course, the compressive pressure was not reduced almost.



This reason is that the growth ration of each bubble is larger if void fraction smaller, and the attenuation effect related with bubble dynamics becomes larger. 

  �



Tensile pressure related to cavitation bubble growth
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For each pressure response, the growth of cavitation bubbles are estimated by using Rayleigh-Plesset model. 



This right hand results are no-bubble condition. This is different from the rigid wall case, the tensile pressure is generated and may induce the cavitation bubbles. The cavitation bubble size is much larger in the no-bubble mercury than in bubble injected mercury.



Most Interesting point is the cavitation bubble growth ratio is hardly different between 5 x 10-3 and 10-5.

     

Or slightly the size of cavitation bubble is smaller at 10-5 than 10-3.



�



Effect of bubble size distribution
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So, the attenuation effect is more important than absorption.

For the attenuation effect, the bubble dynamic is key factor, which is dependent pressure rising rate. 

We simulated very rapid pressure rising rate equivalent to proton beam injection by using electric spark technique, like that.



We compared the attenuation effect which is estimated numerically to experimental results.



From the comparison, we noticed the attenuation effect is larger in the experimentally estimation than the numerically estimated one.



This is because the attenuation is enhanced by randomly distributed bubbles wit different bubble size.     �



What is realistic bubble conditions 
to mitigate damage ?
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For the absorption to reduce the initial compressive pressure due to thermal expansion, the void fraction more than 5 x 10-3 with 50 m radius bubbles are effective. 



But, for the tensile pressure the attenuation effect is more important, which is very dependent on the bubble dynamics.



Even small void fraction such as 10-5, if we have fine small bubble, for example, 10 m in radius, we can expect effective attenuation to reduce the tensile pressure and mitigate cavitation intensity.



This bubble condition may be achieved by the swirl bubbler.

 �



Mitigation techniques for damages 
due to pressure waves

Direct protection of beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves

Flattening beam profile

Micro-bubbles injection

Flowing effect
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Flattening beam profile for reduction of pressure waves�
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Indeed, in JSNS we are developing the octupole magnet to flatten proton beam profile.



By using this technique, we can reduce the peak current density and heating deposition, like that.



These magnet will be installed in 2012 summer shut down period.�



Summary
How can we mitigate the pitting damage ?

Flowing effect   1m/s at JSNS cross flow type
Attenuation due to microbubble injection
Flattening beam profile

In-situ Target Study by LDV & Sound
“PIE” is important
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So, this is summary:

   Flowing effect 

   Attenuation 

   Flattening 



These three factors are very important to mitigate the pitting damage.

For in-situ target study, we have laser Doppler system to measure the target vessel vibration and sound monitoring system, like that �



音響
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This sound was generated by 300 kW, 120 kW and 50 kW proton beam injection to target.

�



T =2.5mm
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Compressive pressure peak related to thermal expansion is absorbed well at higher than 10-3 Vf.
Tensile pressure peak is attenuated by small bubbles at even lower than 10-4 Vf.



Mitigation techniques for damages 
due to pressure waves

Protection for beam window
Surface improvement: Kolsterizing, Plasma N&C

Gas-curtain

Reduction of pressure waves

Flattening beam profile

Micro-bubbles injection

Flowing effect



gas Hg

Micro-ject direction depends on boundary condition

Solid boundary

Free boundary

Jet to solid

Jet to liquid



No-curtain Gas-curtain
MIMTM 106 pulses



Effect of strong flow on damage morphology ?

Narrow channel at 2 m/s ?



Flowing effect on bubble collapsing behavior

Flowing velocity Stagnant
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Pump

Bubbler

Heat
exchanger

Target trolley

Element component tests will be carried 
out in water loop. Concept design is 
being made by a company.

Gas supplying system
to control gas pressure and flow rate

Separate-type compact target 
to reduce waste volume and  install 
bubblers

Seal test was carried out using flange 
with multi-hole: inlet and outlet pipes for 
Hg, He and cooling water. 

Improvement in target system
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