FDS Team

FDS

Institute of Plasma Physics, Chinese Academy of Sciences School of Nuclear Sci. & Tech., University of Sci. & Tech. of China

Highlights of Cross-Cutting R&D Activities for ADS and FDS systems in China

Presented by Yican WU

Contributed by FDS Team

Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) School of Nuclear Science and Engineering University of Science and Technology of China (USTC)

www.fds.org.cn

ycwu@ipp.ac.cn

ADS: Accelerator-Driven Sub-critical System

FDS: Fusion-Driven Sub-critical System

Program Overview with emphasis on Cross-Cutting R&D Activities

Contents

- I. Introduction
- **II. Concept Design & Simulation Tools**
- **III. Material Development & Testing Facilities**
- **VI. Summary**

Economy Development and Energy problem (In the present)

- Population is ~1.3 billion
- Aver. energy consumption per person in China is less than 1/2 of the world level and less than 1/10 of the developed country's level.
- Fast development of economy with annual rate of 8-10 % has kept for more than 25 yeas (this year expected ~11%)
- China has been the 2nd largest energy producing and consumption country in world
- China has been the 2nd largest CO₂ producer

Economy Development and Energy Problem (In the future)

- Conservatively predicted capacity of electricity will be 1200~1500 GWe
- Population would be 1.5 billion at 2050
- China would be the 1st largest CO₂ producer at 2025.

Serious shortage of energy resources ??? Serious pollution of environment ???

Renewable energy + Nuclear Energy

Fission Power Development and Problem (Current policy)

Develop nuclear power as fast as possible

- 2010: ~11GWe (~2% of total capacity)
- ~2020: 40GWe (4% of total)-100GWe

>3 new units to be constructed

per year from now to 2020

~2050: 240GWe (20% of total)?

Fission Power Development and New Problem (future prediction)

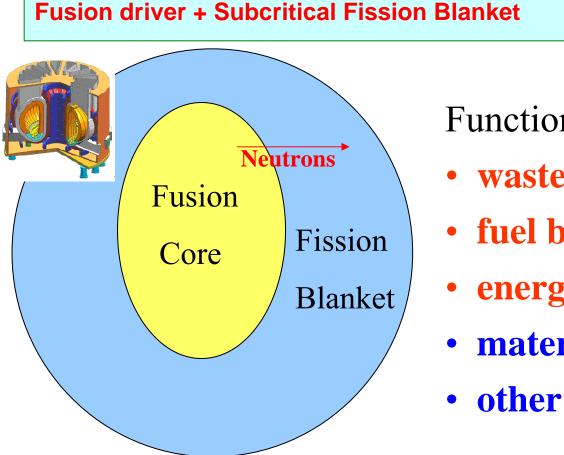
Scenario	Ratio A	Ratio B	Nucl. Power	Capacity (Approximate Scale)	
Low Level	10%	6%	120Gw	Double in France	
Mid. Level	20%	12%	240Gw	Sum in US, France and RF	
High Level	30%	18%	360Gw	> Sum all over the world	

A: fraction of nucl. power in total electricity capacity B: fraction of nucl. power in total primary energy capacity

> Nuclear fuel supply ? Radioactive waste disposal ? Safety problem ?

Fusion Status and Its Long Road to Go

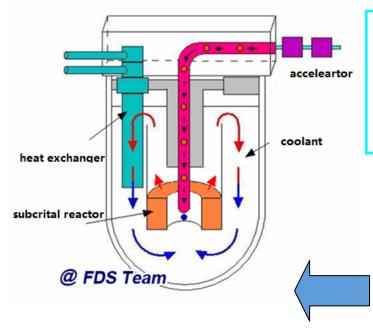
- Current: EAST/HL2A, KSTAR, MAST, ...(~2020)
- Near Future: ITER/IFMIF/CTF...(2020~2040)
- Far Future: fast/ultra-fast track to DEMO


(???~???)

Fusion has a very good progress, but **still needs hard work to economical utilization:**

- \rightarrow feasible to seek for near-term applications
- \rightarrow necessary to find out near-term applications

Fusion-Driven Subcritical System - FDS Multi-Functional Hybrid Reactor



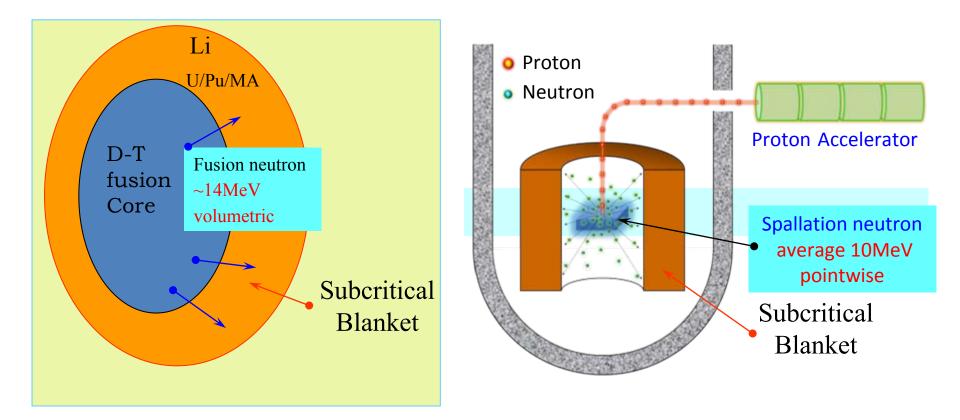
Functions:

- waste transmutation
- fuel breeding
- energy production
- material test
- other applications

Accelerator-Driven Subcritical System - ADS

Accelerator/target driver + Subcritical Fission Blanket

Spallation reaction: Accelerator supplies protons to bombard heavy metal target


Fission reaction: spallation neutrons drive the fission reactions in a subcrital blanket

Main functions:

- 1. Energy production: $n + U/Pu/MA \rightarrow$ Energy
- 2. Fuel breeding: $n + U^{238}/Th^{232}$ \rightarrow Fissile
- 3. Waste transmutation: $n + MA/FP \rightarrow$ less-harmful nucleus

Rationale of Two Types of Subcritical Systems (FDS and ADS)

FDS - torus

FDS

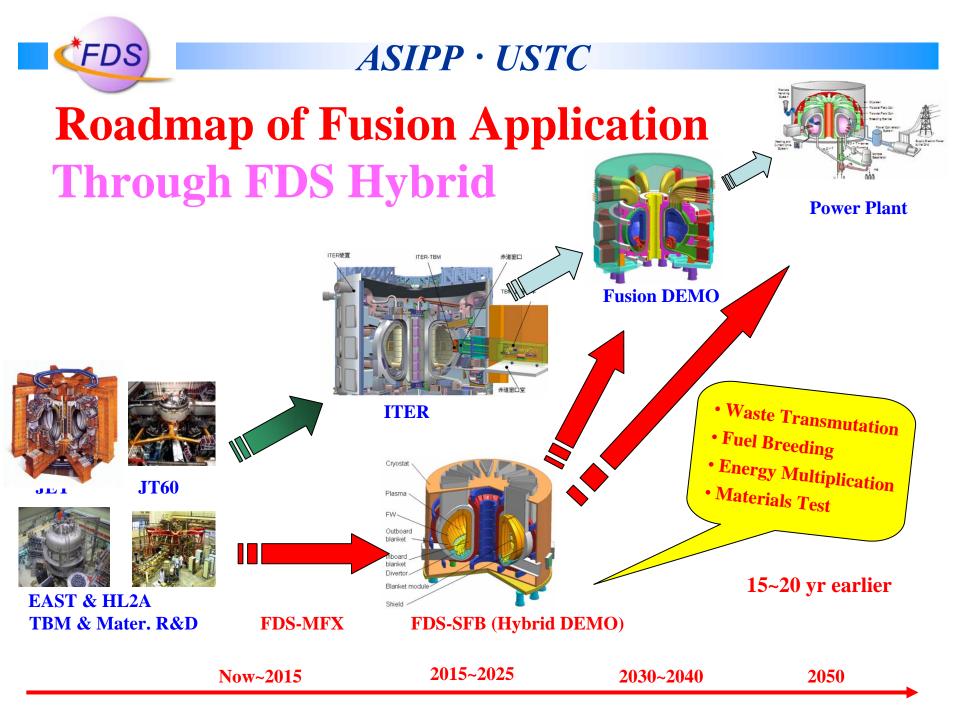
ADS - cylinder

Potential Advantages of Hybrids

- Lower requirement on driver-related parameters (improved energy balance by fission blanket)
- Rich neutrons to achieve multi-goals

(improved neutron balance by fusion neutrons)

- Good passive and inherent safety performances (subcritical)
- Avoidance of nuclear proliferation


(large design margin from subcritical features)

• In general, it can benefit both fusion and fission (fill in the gap, solve left problems by fission, promote fusion)

History of R&D Activities on FDS

1986-2000, supported by MOST "National 863 program" fusion hybrid fuel breeder design activities (conceptual design, engineering outline design etc.) 2001-2006, supported by NSFC, CAS, IAEA etc. fusion hybrid waste transmuter design activities (concept development, safety analysis etc.) 2007-present, supported by MOST, CAS, NSFC hybrid applications for Energy Production /Fuel Breeding/Waste Transmutation "National 973 program" (concept optimization and key technologies R&D, with emphasis on utilization of viable technologies)

History of R&D Activities on ADS

1995-1999, supported by MOST

"National 973 program"

Conceptual study: Blanket concepts, reactor/accelerator physics, Nuclear data Nuclear materials Physical experiment etc. 2000-present, supported by MOST, CAS "CAS special program" Key technology R&D program: Verification facilities (RFQ, Venus etc.) Accelerator technology PbBi loop technology

Contents

- I. Introduction
- **II.** Concept Design & Simulation Tools
 - (FDS concepts, ADS concepts, codes& data)
- **III. Material Development & Testing**
- **Facilities**
- **VI. Summary**

FDS Concepts

ССР

Y. WU et.al, J. of Fusion Engineering and Design, 2006, 81(23-24): 2713-2718

Re-evaluate the Performances of Various Fusion-Fission Hybrid Reactor Concepts

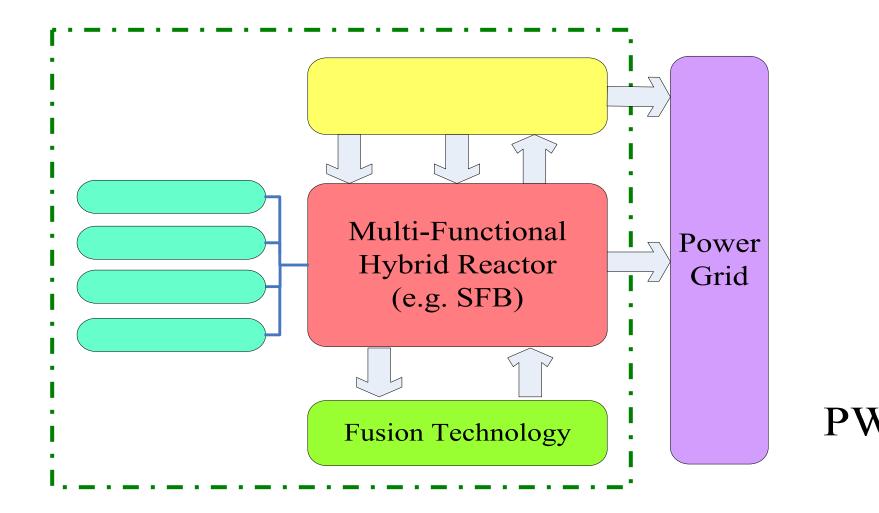
A hybrid reactor for energy production: FDS-EM A hybrid reactor for fuel breeding: FDS-FB A hybrid reactor for waste transmutation: FDS-WT

FDS-MF?

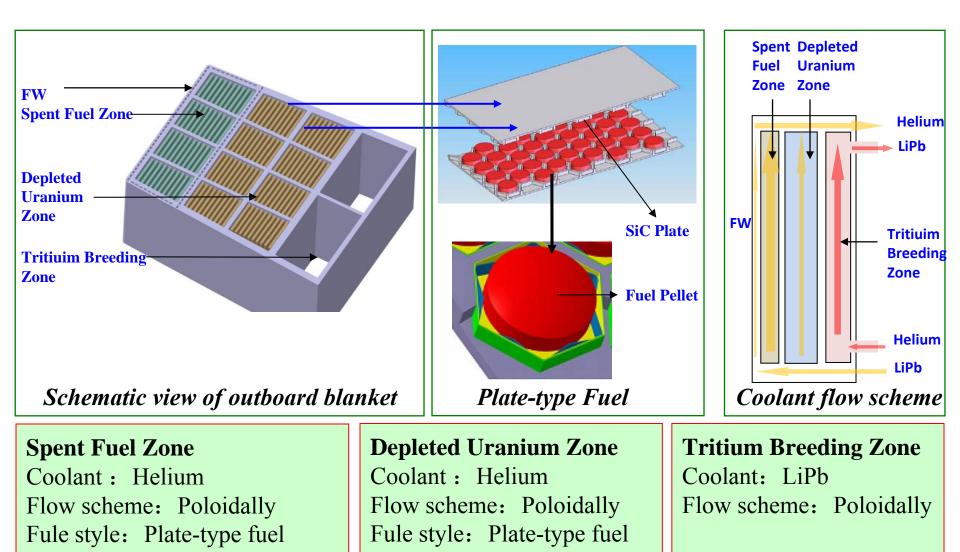
multi-functions based on available or very limited extrapolated fusion and fission technologies

Specific

→ to develop a DEMO concept for application before pure fusion: FDS-SFB (Spent Fuel Burner)


➔ to define a Multi-Functional concept as test platform before DEMO: FDS-MFX (Multi-Functional eXperimental facility)

FDS-SFB


A Fusion-Fission Hybrid Reactor for Spent Fuel Burning

Reference Plasma Core (Driver) Parameters for FDS-SFB/MFX

Parameters	ITER	EAST	FDS-MFX	FDS-SFB	
Fusion power (MW)	500	-	50	150	
Major radius (m)	6.2	1.95	4	4	
Minor radius (m)	2	0.46	1	1	
Aspect ratio	3.1	4.2	4	4	
Plasma elongation	1.85	1.8	1.7	1.78	
Triangularity	0.33	0.45	0.45	0.4	
Toroidal magnetic field on axis (T)	5.3	3.4-4.0	5.1	6.1	
Safety factor / q-95	3	-	2.83	3.5	
Plasma current (MA)	15	1.5	6.1	6.3	
Average neutron wall load (MW/m ²)	0.57	-	0.17	0.49	
Average surface heat load (MW/m ²)	0.27	0.1-0.2	0.1	0.1	
Fusion gain	>10	3	~1	3	
Normalized beta, (%)	2.5	-	3	3	

ASIPP · USTC Blanket Scenario for FDS-SFB

FDS-MFX Concept and Objectives

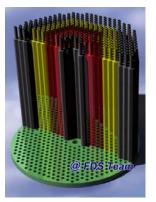
- Based on easy-achieved plasma parameters extrapolated from the successful operation of the existing tokamaks e.g. EAST and well-developed fission technologies e.g. GEN-IV
- Demonstrate the scientific and technological feasibility of fusion-fission hybrid reactor

• Main tests:

- ✓ Plasma science and engineering
- ✓ Fusion nuclear technology and engineering (neutronics/thermalhydraulics/material etc.)
- ✓ Fusion fuel (tritium) technology
- ✓ Fission fuel technology
- ✓ Subcritical reactor technology
- ✓ Reactor operation and remote maintaining technology

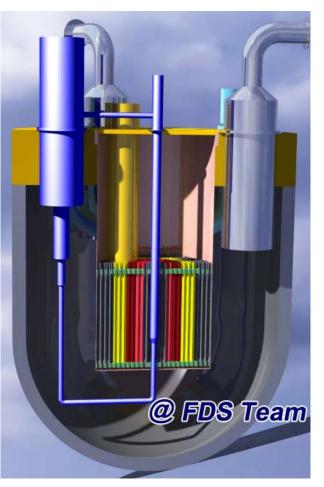
FDS-MFX Main Design Characteristics

Fusion Driver		~50 MW
	Coolant	Helium gas
	Exp. Stage 1	Pin type fuel Natural Uranium (Oxide) Stainless Steel (Cladding)
Blanket	Fuel Exp. Stage 2	Plate type fuel Enriched Uranium (Carbide) SiC (Cladding)
	Tritium Breeder	LiPb
	Structural Material	RAFM


Fuel Stage 1: For proof-of-principle experiment of hybrid reactor Fuel Stage 2: For technology/eng. demonstration of hybrid reactor **ADS** Concepts

CAS-ADS Concept: ADS-WT

(ASIPP-proposed Demonstration Reactor for Waste transmutation)


Design objective	Waste transmutation			
Accelerator power	1.5GeV/10mA			
Keff	0.95-0.98			
Thermal power	~1000MW			
Spallation target	Windowless PbBi Target			
Fuel	Dispersed MA/Pu/Zr alloy			
Coolant	Liquid PbBi			

Subcritical Blanket

Fuel Pin

ADS -WT

CAS-ADS : Verification & Experimental Facilities

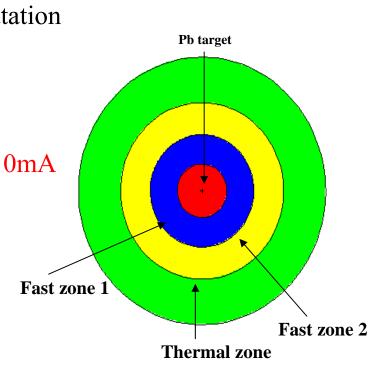
- Experimental ADS-ER: Build the ADS transmutation experimental reactor and provide technical support to resolve the ADS demonstration reactor.
- Initiative ADS-VF: Build small scale coupling system with accelerator and reactor, to demonstrate the ability of designing, building and operating the ADS system device.

Project	Accelerator power (MW)	K _{eff}	Core Power (MW)	Flux Spectrum (n/cm ² /s)	Target	coolant	Fuel
ADS-ER	6-10 (0.6-1GeV/10mA)	0.95-0.98	~100	FR 10 ¹⁵	LBE Windowless	LBE	MOX (MA)
ADS-VF	1 (100MeV/10mA)	~1	~10	FR	LBE (window)	LBE	UO_2

CIAE-ADS Concepts

General concept

- Fast-thermal coupled system
- Design goal: Energy production, transmutation


Accelerator

- Beam power:10MW
- Proton incident energy: 1GeV, Current: 10mA

Target: Pb

Preliminary Core design

- Thermal power: ~1000-2300MW
- Fuel design: Natural U, MA and Th

Design & Analysis Tools Development (Software)

1. Physics and Engineering Calculation PEC

- Multi-functional neutronics calculation & analysis system: VisualBUS
- Multi-physics (neutronics/thermalhydraulics/MHD) coupling simulation codes: NTC/MTC
- System (safety/economy) analysis codes: TAS, RiskA, SYSCODE
- Liquid TBM accident analysis code based on RELAP5
- 2. Computer Modeling and Simulation CMS
 - Automatic Modeling Codes: MCAM/SNAM/RCAM/HUMOP
 - Visualization/Virtual Roaming/Virtual Assembling Codes: SVIP/RVIS/FVAS
- 3. Database Management System DMS
 - Plasma/Nuclear/Material/Component data libraries: FusionDB
- 4. Integrated Design & Simulation Platform 4DS
 - Virtual Fusion Reactor (application of 4DS)

> 50~100 man-years each program

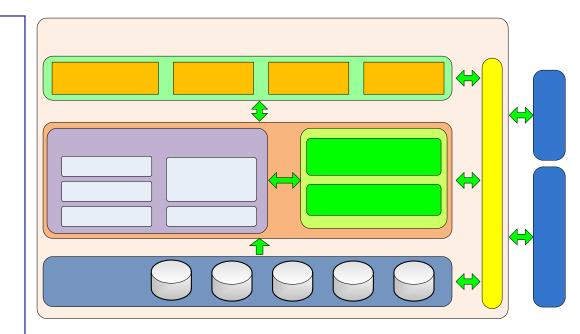
Key Tools for Reactor Design and Analysis

VisualBUS

Multi-Functional Integrated 4D Neutronics Simulation System

Main Functions

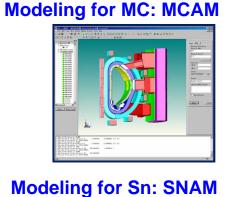
4D: Coupled Calculation


- Particle Transport
- Fuel Isotope Burnup
- Material Activation & Irradiation
 Damage
- Radiation Dose
- Fuel cycle management

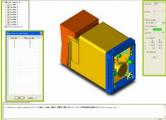
4D: Automatic Modeling

- Monte Carlo (MC) geometries
- Discrete Ordinates (SN) geometries
- MC-SN coupled geometries
- Human dosimetry models reconstructed

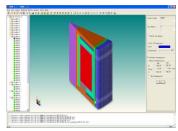
4D: Visualized Analysis


- Static / dynamic physical data fields
- Virtual roaming and dosimetry assessment
- Virtual assembling of component models

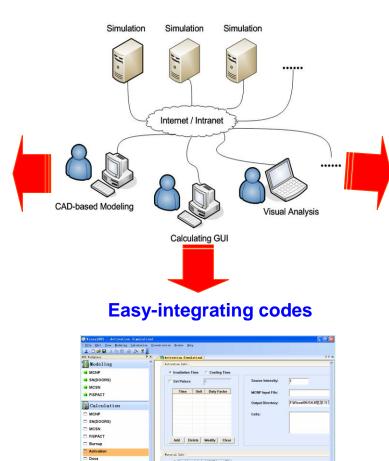
Supporting Components:


- Hybrid Evaluated Nuclear Data Library for fusion/fission/ hybrid
- Interfaces for other physics process simulations such as thermal-hydraulics, mechanics, safety, environmental impact and economics etc.

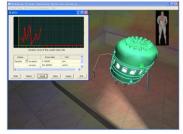
ASIPP · USTC VisualBUS User Interface

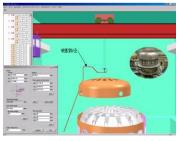


FDS


IOGEIING FOR Sn: SNAW


Modeling for MC-Sn: RCAM


CAD-based Modeling GUI


Field Visualization: SVIP

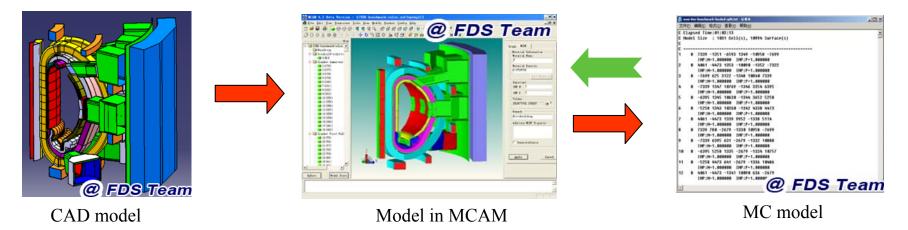
Virtual Roaming: RVIS

Virtual Assembling: FVAS

Visualized Analysis GUI

Coupled Calculation GUI

ndex Material NO.

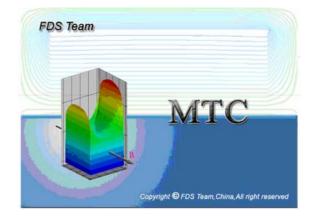

Analysis

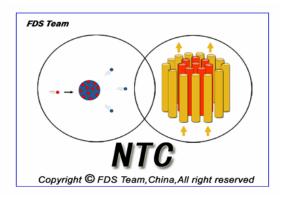
SN(DOORS MCSN FISPACT

Automatic Modeling Programs

MCAM: Monte Carlo Automatic Modeling Program CAD ←→ MC (MCNP / TRIPOLI /...)

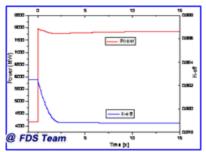
- Passed ITER QA verification & validation
- Selected as "ITER reference code"
- Created the 3D "ITER reference neutronics model"
- Applications: > 100 international institution users


SNAM: SN Automatic Modeling Program (CAD←→SN) RCAM: MC-SN Coupled Automatic Modeling Program (CAD←→MC-SN) HUMOP: Human Automatic Modeling Program


MTC/NTC: Multi-Physics Coupling Simulation Programs

• MTC (Magnetic - Thermohydraulics Coupled Simulation Program)

- MTC-F 1.0/2.0: Developed base on the B-formulation
 - MHD effects : FLUENT +User-routine
 - Exact solution on the condition: Ha<500
- MTC-H 1.0: Developed base on the ϕ -formulation
 - Good accuracy for low magnetic Reynolds numbers
 - Consistent and conservative scheme
 - Exact solution for high Ha~10000


• NTC (Neutronics - Thermohydraulics Coupled Simulation Program)

- ◆ Safety analysis
 - -Design basic accidents analysis
 - -Severe accident analysis

Advanced reactor design

- -Advanced fission reactor design
- -Advanced fusion reactor design

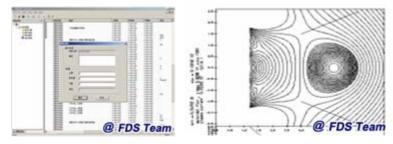
The influence of neutron source to reactor power and reactivity

Risk and Economy Analysis Programs

RiskA: Probabilistic Safety Assessment Program

- **FMEA (Failure Mode and Effects Analysis)**
- **FTA (Fault Tree Analysis)**
- **ETA (Event Tree Analysis)**

- Importance Analysis
- Uncertainty and Sensitivity analysis
- Optimization of reliability parameters


RiskAngel: Risk Monitor for Nuclear Power Plants (Qinshan nuclear power plant)

- Instantaneous risk calculation
- Component OOS / restore
- Schedules optimization
- Evaluation of AOT/ACT

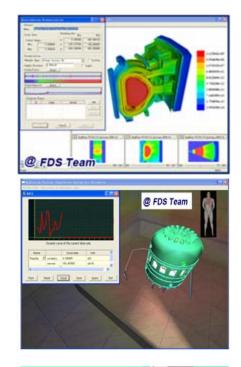
SYSCODE: System Analysis Program for Parameter Optimization and Economical Assessment of Fusion Reactor

- Physical engineering design
- Economic evaluation
- Design optimization
- Sensitivity & Uncertainty analysis

Y. Wu et.al, Chinese J. Nucl. Sci. & Eng., Vo.27, No.3 (2007)

Visualization & Virtual Simulation Programs

SVIP: Scientific Visualization Program


- 4D visualized data analysis for VisualBUS / MCNP / TORT...
- Various visualization functions (Iso-surface, volume rendering, ...)
- Visualized data analysis coupled with geometries

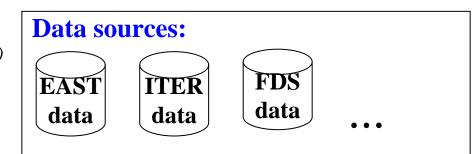
RVIS: Radiation Virtual Simulation System

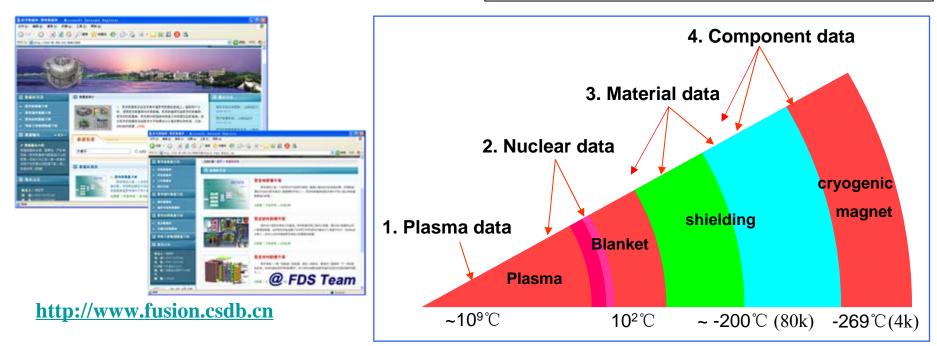
- Flexible & realistic virtual roaming
- 4D visualization of dynamic spatial radiation field
- Real-time & accurate evaluation of human & organ dose
- Good compatibility & excellent expansibility

FVAS: Fusion Virtual Assembly System

- Automatic/semi-automatic/manual virtual manipulation interfaces
- Real-time simulation & accurate collision detection
- Flexible virtual roaming based on multi-viewpoints
- Supporting record & replay of assembly processes

Virtual assembly of EAST


FusionDB: Database Management System for Fusion (China Fusion Data Library)


♦ Fusion data management

(Plasma, nuclear, material, component...)

Data processing software

(visualization, model auto-conversion...)

更新了

Nuclear Data Library - HENDL

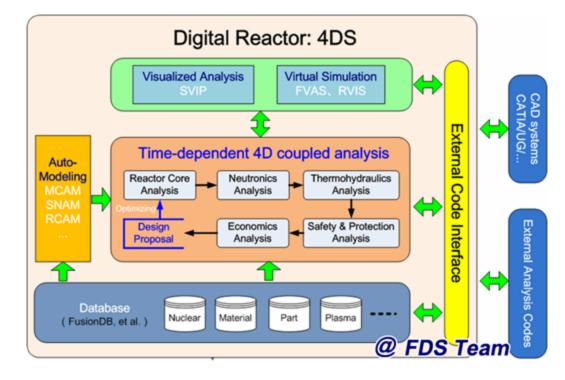
Hybrid Evaluated Nuclear Data Library for Fusion, Fission and Hybrid Applications

- From various international evaluated neutron nuclear data libraries, such as FENDL, ENDF/B, JENDL, JEF and BROND
- Including Multi-function Working Libraries, Transport.lib, Burnup.lib, Activation.lib, Iriradiation.lib, Dose-factors.lib

Many Kinds of Group Energy Structure

- -HENDL/CG (27n/21g)
- -HENDL/MG (175n/42g)
- -HENDL/FG (315n/42g)
- -HENDL/ADS (372n/42g)
- HENDL/MC (point-wise)

Various Kinds of Physics Effects


- Resonance self-shielding
- -Temperature Doppler
- Thermal neutron up-scattering

4DS: the 4-Dimensional System for Integrated Design and Simulation of Advanced Reactors

- 4D accurate calculation based on multi-physics coupling concept
- Auto-modeling & visualized analysis
- Integration of design & operational simulation
- Auto coupling of multiprocesses
- Virtual roaming & assembly

- Easy to integrate new-developed codes, due to hierarchical design
- Serve to Design & Simulation of advanced reactors

Virtual Reactors: Digital FDS and ADS

Parametric Design; Auto-Modeling / Coupled Calculation / Visualized Analysis; Virtual Assembly & Dose Evaluation

Application of 4DS

System Analysis/Virtual Simulation

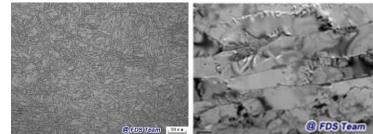
Contents

- I. Introduction
- **II.** Concept Design & Simulation Tools
- **III. Material Development & Testing Facilities**
- **VI. Summary**

Structural Materials & Irradiation Facilities

Ton Level Melting of CLAM Steel

Main compositions

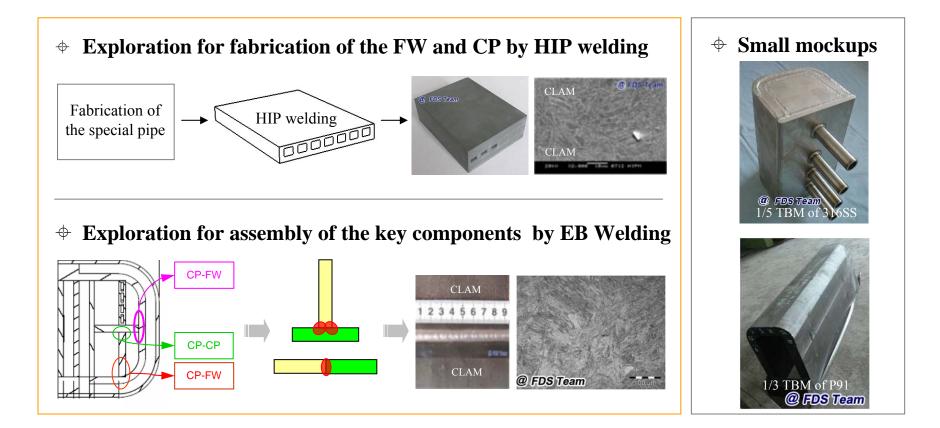

CLAM: China Low Activation Martensitic Steel

Elements	Fe	С	Mn	Cr	W	V	Та
Content (wt%)	Bal.	0.10	0.45	9.0	1.5	0.20	0.15

1.2 ton ingot smelting

Microstructures

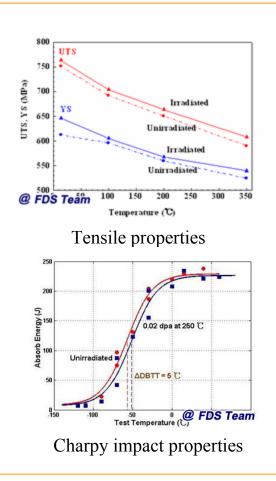
Mechanical properties

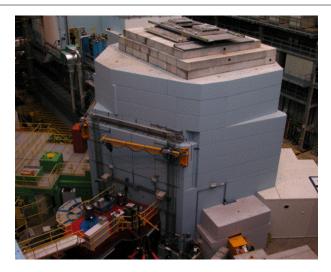

	R _{P0.2}	R _m	A/%	Z/%	Akv(J)
Beem	533.65	658.11	20.40	70.99	
Room	533.96	660.33	24.20	76.38	240, 225, 248
temperature	541.51	663.72	21.20	72.97	
	306.68	349.29	20.00	78.97	
High temperature	319.42	362.10	20.80	86.34	
	312.28	350.97	24.00	85.23	

Compositions and **mechanical properties** agree with the requirements of design.

Fabrication and Manufacture of TBM

Following the design & test strategy of TBM, exploration for the fabrication and manufacture technique of TBM are being performed.



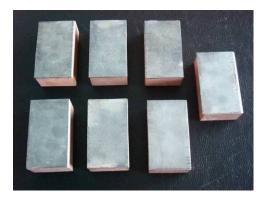

ASIPP · USTC Irradiation Test of CLAM Steel

High Flux Engineering Test Reactor (HFETR) in China

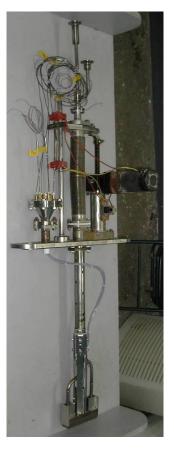
Neutron Irradiation tests (~1dpa, ~300℃) are underway.

Spallation Neutron Source, SINQ, in PSI, Switzerland

Spallation irradiation tests (>10 dpa, 100~500°C) was finished (STEP-V)


PIE to be done

Ion and electron irradiation tests were also done to investigate irradiation effects.

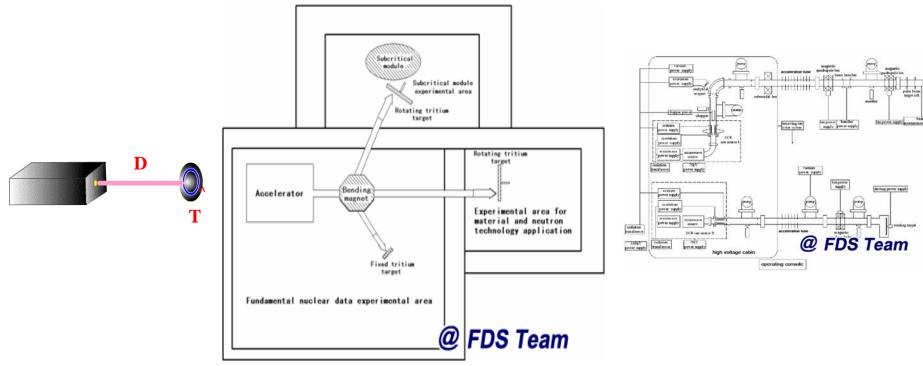


Related Structural Material R&D Activities (examples)

W/W-Cu alloys (CAS-ISSP/ASIPP, Fang et al) plasma-facing material/first wall material
V-4Cr-Ti alloys (SWIP, Chen et al) advanced low activation structural material
Modified 316SS (CIAE) fission fuel element cladding material

EAST's Possible Contributions

(The first full superconducting tokamak device in the world)


- EAST is an important platform for fusion driver technologies and physics test at least before ITER D-T plasma operation.
- A fusion driver could be designed based on EAST's and other tokamaks' successful operation with long pulsed or staty-state, elongated divertor configuration and high performance plasma.
- EAST can make an important contribution to hybrid/DEMO development.

Parameters	ITER	EAST
Total fusion power	500 ~ 700 MW	(~10 ¹⁶ D-D Neutrons S ⁻¹)
Inductive pulse time	≥ 400 s (Q ≥10)	~ 10 s
No-inductive pulse time	1000~3000s (Q ~5)	~1000 s
Expected n T τ	~10 ^{21~22} m ⁻³ s kev	~10 ^{19~20} m ⁻³ s kev
B _T (6.2 m)	5.3 T	3.5 - 4.0 T (1.7m)
R ₀	6.2 m	1.7 m (1.85m)
a	2.0 m	0.4 m (0.45m)
κ ₉₅	1.70 / 1.85	1.8 / 2.0
δ ₉₅	0.33 / 0.49	0.30 / 0.60
Ір	15 (17) MA	1.0 (1.5) MA
Divertor Configuration	Single Null	Single & Double Null
Auxiliary Heating / CD Power	73 – 110 MW	4-20 MW

High Intensified D-T Neutron Generator

(HINEG D-T neutron rate: 10¹⁰~10¹³ n/sec, under design/concstruction at Hefei)

- (1) Fusion neutronics Integrated Testing of Materials and Components
- (2) Validation of Codes and Data libraries

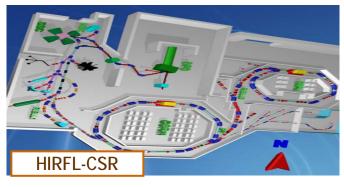
Accelerator-based Heavy Ion & Synchrotron Radiation Facilities

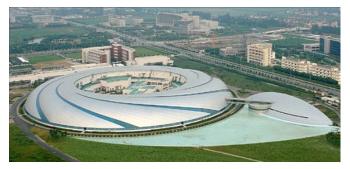
• NSRL (National Synchrotron Radiation Lab in Hefei)

- ✓ Second-generation of synchrotron light source
- ✓ Vacuum ultraviolet photon & soft X-ray

• SSRF (Shanghai Synchrotron Radiation Facility)

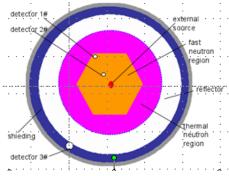
- ✓ Third-generation of synchrotron light source
- ✓ ~1600 times higher than the lightness of NSRL


• HIRFL (Heavy Ion Res. Facilities in Lanzhou)

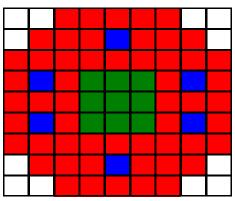

- ✓ ECR + Cyclotrons + CSR
- \checkmark Ions: proton \rightarrow Pb, U
- ✓ Energy: KeV→Few GeV

Potentional application for material research

- Material defect
- Atom constitution & electromagnetism structure
- Dynamic image procudure
- Ion irradiation effects



ASIPP · USTC Subcritical System: VENUS (CIAE)


Phase 1: Am-Be steady outside neutron source to drive Venus-1 and doing neutronics character tests

◆Phase 2: Outside neutron source generated by high-voltage multiplier to drive Venus-1 and doing neutronics character tests.

	Venus1	Venus2 (planed)
Fuel	natural metal U, enriched UO ₂	Spent fuel of CARR, U ₃ Si ₂ -AL
Keff	0.95-0.98	0.982
Spallation target		Solid W
Energy of proton beam		100MeV
Yield of spallation neutron		0.3n/p
Beam Intensity	-	0.3mA
Beam power	-	30kW
Thermal power of core	10W	200kW

Venus 1 subcritical reactor

Venus 2 subcritical reactor

Examples of Fission Test Reactors

HFETR (High Flux Engineering Test Reactor, NPIC) Light water, 125 MWt, Neutron~1.7×10¹⁵ n/cm2·s

High Temperature Gas-cooled Reactor (**HTR-10, U. QH**) He-cooled, 3MPa, 10MWt, Tout=750℃

Experiment Fast Reactor (CEFR, CIAE) Na-cooled, 65MWt, N~3.7×10¹⁵ n/cm2·s,Tou

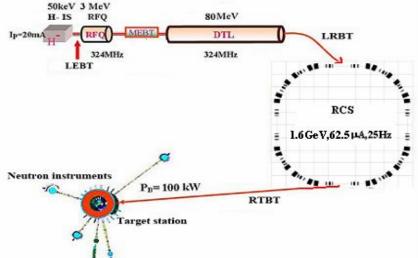
Advanced Research Reactor (CARR, CIAE Water, 60MWt, N~1.0×10¹⁵n/cm2·s

R&D Activities on SCWR and MSR

SCWR (Super Critical Water Reactor, SJTU)

- The physical concept design, analysis software and database are developed.
- Corrosion behavior, Mechanical Properties and irradiation damage of candidate materials are being performed.
- > Thermal hydraulics experiment loop are constructed.

TMSR (Thorium Molten Salt Reactor, CAS-SIAP)


CAS plans to develop the TMSR technology and construction experimental reactor in the future.



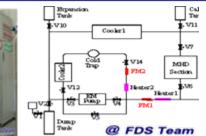
ASIPP · USTC China Spallation Neutron Source - CSNS

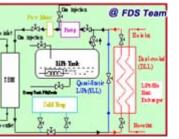
- Advanced researches and applications in physics, chemistry, biology, life science, material science and new energy
- Max impulse neutron flux
 2.5×10¹⁶ n/(cm²s)
- Basic design parameters

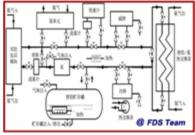
Basic parameters	CSNS-I	CSNS-II	
Beam power(kW)	100	200	
Repetition rate(Hz)	25	25	
Average current(µ A)	62.5	125	
Proton energy(GeV)	1.6	1.6	
Linac energy(MeV)	80	132	

-From http://www.csns.ac.cn

Functional Materials & Testing Loops




Development of DRAGON Series LiPb Loops


Loop name	Туре	Function	Temperature	Time
DRAGON-I	TC*	Compatibility test under low temperature	420~480 ^o C	2001-2005
DRAGON-II	ТС	Compatibility test under high temperature	550~700 ⁰ C	2004-2006
DRAGON-III	ТС	Compatibility test under super-high temperature	800~1000 ⁰ C	2007-2009
DRAGON-S ^T	Static	Compatibility test in the static LiPb	250-1000 ^o C	2008-2009
DRAGON-R ^T	Rotating	Compatibility test in the flowing LiPb	450-600 ⁰ C	2009
DRAGON-IV	FC [#]	Compatibility, Thermal-hydraulics, TBM mockup, MHD test, etc.	480-800 ⁰ C	2007-2010
DRAGON-V	FC	Dual-coolant test for TBM, MHD test for the complex ducts	300-700^oC	2010-2011
DRAGON-VI	FC	Auxiliary system for EAST-TBM	300-700⁰С	2010-2014
DRAGON-VII	FC	Auxiliary system for ITER-TBM	300-700^оС	2015-2018
DRAGON-VIII	FC	Auxiliary system for DEMO blanket	-	2019-

DRAGON-IV: Forced Convection LiPb Loop

• Experiments:

- High temperature corrosion (800°C)
- Stress corrosion (480°C, 4KN)
- MHD (350°C; 2T; 1m/s)
- Test Blanket Mockup
 - (1/5-size-reduced)
- LiPb eutectic purification

Components:

DRAGON-IV

✓ Figure-of-eight type loop with a central heat exchanger, a hot leg and a cold leg;
 ✓ Hot leg contains Corrosion test section, MHD test section, Mini-blanket, etc;
 ✓ The cold leg contains the pump, flow meter and cold trap.

Fabrication of SiC_f/SiC Composites

Requirements:

- Low / high thermal conductivity
- Low electrical conductivity
- Good compatibility with LiPb under elevated temp.
- Stable under neutron irradiation

SiC_r/SiC composites

SiC fiber

SiC fiber cloths

Continuous SiC fiber reinforced ceramic matrix composites

@ FDS Team

SiC fiber felt

Strength of Continues SiC fiber reach 2.8-3.0GPa

@ FDS Team

Loop Technology

Fiber 3D braid preform

SiC fiber braid tube

Key issues:

composites

Fabrication of SiC_r/SiC pipe

Bonding technology of SiC₄/SiC

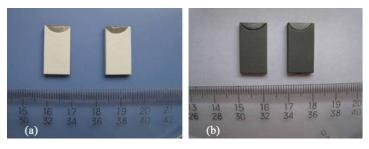
Fabrication of FCI

@ FDS Team

SiC composite

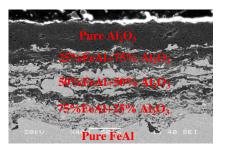
Connection of metal and

SiC_f/SiC composites were fabricated by CVI + PIP + CVD.


CVI---Chemical Vapor Infiltration PIP---Polymer Infiltration and Pyrolysis CVD---Chemical Vapor Infiltration

Development of Functional Coatings

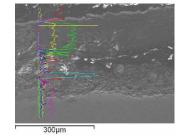

- Coating fabrication
 - ✓ Al₂O₃/SiC Coatings

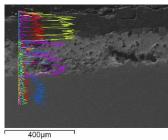


(a) $Al_2O_3(APS)$

(b) SiC (MS) on Al_2O_3

✓ FeAl/Al₂O₃ Coatings

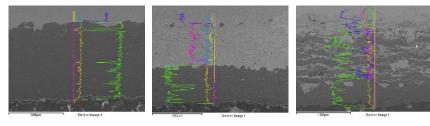




FeAl/Al₂O₃ FGM coatings (VPS)

- Both coatings showed a higher bond strength with CLAM steeel, porosity was controlled at a low level;
- Al₂O₃/SiC coating showed excellent electrical resistivity;
- FeAl/Al₂O₃ coating showed excellent shock resistance.

- Coating compatibility
 - ✓ Experiment in the static isothermal capsule
 - Al₂O₃, Al₂O₃/SiC coatings (550°C, 5000h)



(a) $Al_2O_3(APS)$

(b) Al_2O_3/SiC (MS)

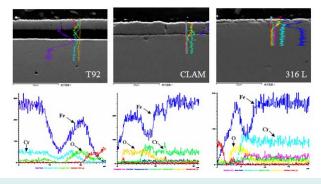
- ✓ Experiment in the revolving isothermal capsule
 - Al₂O₃, Al₂O₃/SiC, FeAl/Al₂O₃ coatings (550 °C, 0.16m/s, 300h)

(a) $Al_2O_3(APS)$

- (b) Al_2O_3/SiC (MS) (c) $FeAl/Al_2O_3$ (VPS)
- There's no obvious thinning of external Al₂O₃, SiC layers after 5000hrs exposure in static LiPb.
- The coatings showed good compatibility with flowing liquid LiPb after 300hrs exposure.

Thermal Convection PbBi Loop (KYLIN-I)

@ Design Objectives:


- Material compatibility test
- Tasting of PbBi eutectic

@ Major parameters:

- Loop size : 0.5m×0.5m
 Structural Material : SS316L
 Temperature : 450 ~ 480°C
 Flowing velocity : 0.14m/s
 Volume of PbBi : ~2L
- Atmosphere : Ar (99.999%)

Operated more than 1000hrs

All Specimens suffered oxidation corrosion at 480°C

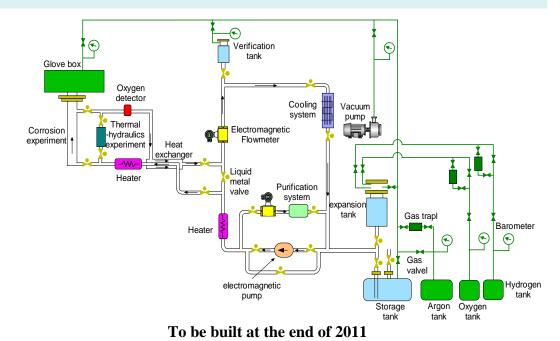
Forced Convection PbBi Loop (KYLIN-II)

• Design Objectives:

Compatibility experiment

- Search for the approach to reduce corrosion (control of oxygen concentration, coating, etc.)

> Thermal-hydraulics experiment under forced convection

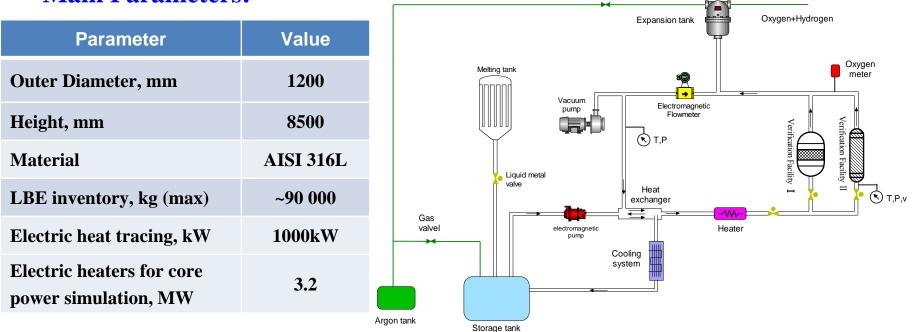

- Providing physical model and data for simulation software of reactor design

> Thermal-hydraulics experiment under natural convection

- Research of passive safety experiment

Main Parameters:

Parameter	Value
Temp. of corrosion experiment section	600℃
Velocity of corrosion experiment section	2m/s
Electromagnetic pump pressure head	0.5MPa



Large-scale PbBi Loop (KYLIN-III)

- Design Objectives:
 - > Thermal-hydraulics Verification Facility for ADS reactor
 - > Thermo-mechanical Verification Facility for High Power LBE Target

Main Parameters:

Summary

- 1. FDS and ADS have many similarities in design principle and engineering technology, a number of design tools, testing facilities and expertise may be shared.
- 2. China has a long history in the development of ADS and FDS concepts and related technologies. Recently FDS research focused on FDS-SFB (Spent Fuel Burnner), and ADS research focused on ADS-WT (high level Waste Transmutation).
- 3. A series of design & simulation software have been home-developed, especially for the neutronics and safety analysis, some of which have been applied widely in the world.
- 4. Structural and functional materials (e.g. ton-level CLAM steel) have been developed. Irradiation and compatibility experiments have been performed either in liquid metal loops or test reactors.

FDS Team

13 SOF

Research Team on **Advanced Nuclear Energy**

Fusion/Fission Design Study (先进聚变和裂变反应堆相关研究) Contraction of the contraction o

Fusion **D**esign **S**tudy (聚变设计研究)

Fusion **D**riven-subcritical **S**ystem (聚变次临界系统)

The End

Thanks for your attention !

FDS Website: www.fds.org.cn