

Corrosion Kinetics of Steel T91 in Flowing Oxygen-Containing Lead-Bismuth Eutectic at 450° and 550° C

J. Konys, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Novotny

INSTITUTE FOR MATERIALS RESEARCH III. CORROSION DEPARTMENT

Creep strength-enhanced ferritic steels (CSEF)

Maximum temperature for 100,000 h stress rupture strength $\sigma_{RS/100,000\,h}=100$ MPa according to Ennis and Czyrska-Filemonowicz (Sādhanā 28[3-4], 2003, 709-730)

- Favourable properties of CSEF in comparison to austenitic steels
 - High thermal conductivity
 - Moderate thermal expansion
 - Higher allowable irradiation dose

- Criteria for service in an ADS with Pb or LBE target
 - Compatibility with thermo-mechanical loads under regular and exceptional operating conditions
 - Resistance against liquid-metal corrosion
 - Long-term stability of mechanical properties under extensive neutron and proton irradiation

Impact of oxygen dissolved in liquid Pb-alloys on steel corrosion

- Stimulation of the oxidation of steel constituents
 - Formation of an oxide scale on the steel surface
 - Spatial separation of the steel from the liquid metal
 - Reduced dissolution rate
- Steel constituents must be less noble than the constituents of the liquid metal
 - Applicable to pure Pb and LBE
 - Not applicable to Pb17Li and Na

Generalized corrosion scale on basically Fe-Cr alloys

- Quantifiable by metallographic measurements
- Initial specimen geometry must be known for quantification of Δx_{ST} and Δx_{d}

CORRIDA: Corrosion-testing in dynamic lead alloys

Technical data

- Material: 17-12 Cr-Ni steel (1.4571)
- Developed length: 36 m
- □ Liquid metal: ~1000 kg LBE
- Mass flow: 5.3 kg/s (steady state)
- □ $T_{max} = 550^{\circ}$ C (test-sections, oxygen control-box)
- □ $T_{min} = 350-385^{\circ}$ C depending on T_{max} at inlet of EM-pump
- Oxygen control:
 Gas with adjustable O₂-content introduced at T_{max}

□ Operating data

- Commissioning in July 2003
- □ 30,000 h of effective operation at T_{max} = 550° C reached in February 2008
- Longest exposure time of specimens: 20,000 h
- Another 8000 h of operation at T_{max} = 450° C reached in June 2009

Specimens for exposure in the CORRIDA loop

☐ Standard specimen

- □ Basic geometry: Ø8 × 35 mm
- Maximum 18 specimens joined via screw-threads and introduced into the test-section (vertical tube)
- v = 2 m/s in the gap between specimens and tube wall for standard specimen geometry and liquidmetal mass-flow

Preparation

- Surface finish by turning
- Determination of the initial diameter
- Degreasing with acetone

□ Post-test analyses

- Metallography on cross-sections in the light-optical microscope (LOM) and SEM/EDX
- Determination of remaining metal diameter and scale thickness in the LOM

Long-term corrosion studies in flowing oxygencontaining LBE conducted at KIT

Temperature	Flow velocity	Nominal oxygen concentration	Maximum Exposure times	Tested materials
550 (+5)° C	2 (±0.2) m/s	10 ⁻⁶ mass%	~ 20,000 h	CSEF (T91, E911, EUROFER), ODS steels, Type 316SS, surface alloyed steels (AI),
450 (+5)° C	$2~(\pm 0.2)$ m/s	10 ⁻⁶ mass%	~ 8000 h	CSEF (T91, E911), pure Fe, Type 316SS,

Next exposure experiments:

550° C	2 m/s	10 ⁻⁷ mass%
450° C	2 m/s	10 ⁻⁷ mass%
350° C	2 m/s	10 ⁻⁷ mass%

Additionally, P92 and 15-15 CrNiTi (1.4970)

Times of exposure at 550° and 450° C of T91, and actual oxygen potential (concentration) in the course of the experiments

Composition (in mass%) and final heat treatment of T91 samples

T91-A									
Fe	Cr	Mo	Mn	Si	V	Cu	Ni	Nb	Co
bal.	9.44	0.850	0.588	0.272	0.196	0.0980	0.100	0.072	0.0156
С	N	P	S	Al	Zn	Sn	Ti	W	As
0.075	n.a.	0.018	0.006	0.007	0.0043	0.004	0.0010	< 0.003	n.a.

T91-A:
Higher Cr content and longer heat treatment in comparison to T91-B

Heat treatment of $100 \times 100 \times 40$ mm sample:

(1) 2 h at 1050° C; furnace-cooling down to 350° C, followed by air-cooling

(2) 4 h at 750° C; furnace cooling

Т91-В									
Fe	Cr	Mo	Mn	Si	V	Cu	Ni	Nb	Co
bal.	8.99	0.89	0.38	0.22	0.21	0.06	0.11	0.06	n.a.
C	N	P	S	Al 0.0146	Zn	Sn	Ti	W	As
0.1025	0.0442	0.021	0.0004	0.0146	n.a.	0.004	0.034	0.01	0.008

Final heat treatment of hot-rolled 15 mm thick plate:

- (1) 15 min at 1050° C; water cooling
- (2) 45 min at 750° C; air cooling

Oxide scale on T91 at 450° C, 2 m/s and 10⁻⁶ mass% oxygen

- ☐ Bi-layer scale (magnetite, spinel)
- Slight internal oxidation along steel-grain boundaries, no important IOZ
- Local Cr-enrichment inside the magnetite layer has not been observed in all EDX linescans

 Occasionally, accumulation of Pb and Bi in the scale (with insignificant impact on corrosion damage)

T91-B, 502 h

T91-A, 8039 h

Kinetics of oxide-scale growth for T91-B at 450° C, 2 m/s and 10⁻⁶ mass% oxygen

Parabolic: $\Delta x^2 = k_2 t$

Parabolic after faster initial kinetics: $\Delta x^2 = k_2 t + C_2$

Logarithmic:

$$\Delta x = k_{log} \log(t + t_0) + C_{log}$$

Paralinear: $\frac{d\Delta x}{dt} = \frac{k_p}{2\Delta x} + k_1$

- Local internal oxidation was not considered
- Thickness of the oxide layers slightly lower (by ~20%) for T91-A

Implications from paralinear model of oxide-scale growth

- Paralinear kinetics of spinel growth with rate constants $k_{p;SP}$ (parabolic part) and $k_{l;SP}$ (linear part) means
 - Movement of the magnetite/spinel interface (with position X_{SP}) from X₀ towards the instantaneous position of the steel surface (X_{ST})

$$- (X_0 - X_{SP}) = k_{1:SP} t$$

- Transformation of spinel into magnetite at this interface
- Local enrichment of Cr inside the magnetite layer indicates incomplete spinel transformation
- Metal recession:

-
$$(X_0 - X_{ST}) = -\Delta x_{ST} = k_{1:SP} t - \Delta x_{SP}$$

Dissolved part of the oxide scale (magnetite layer):

$$\Delta x_d = -(k_{1;SP} + k_{1;M}) t$$

Simulation on the basis of paralinear model of oxide-scale growth

- Discrepancies between model and experimental data mainly result from inaccurate prediction of the movement of the magnetite/spinel interface (X_{SP})
- ☐ Kinetics of this movement is apparently slower than linear, possibly parabolic with respect to the part of the spinel layer transformed into magnetite
- \(\Delta \times_{\text{Scale}} \)) depends on oxide porosity which was not taken into account

Data extrapolation for T91 at 450° C, 2 m/s and 10⁻⁶ mass% oxygen

Parabolic: $\Delta x^2 = k_2 t$

Parabolic after faster

initial kinetics: $\Delta x^2 = k_2 t + C_2$

Paralinear model of oxide scale growth

Logarithmic:

$$\Delta x = k_{log} \log(t + t_0) + C_{log}$$

	Exposure time (years)				
	1	5	10		
T91-A → Upper limit of Cr content specified for T91					
Δx_{M} (µm)	10	13–22	13–31		
∆x _{SP} (µm)	7	8–14	8–20		
Δx_{ST} (µm)	9	20	28		
T91-B → Lower limit of Cr content specified for T91					
Δx_{M} (µm)	12	15–26	15–36		
Δx _{SP} (μm)	8	10–16	10–23		
Δx _{ST} (μm)	12	26	37		

Oxide scale on T91 at <u>550°C</u>, 2 m/s and 10⁻⁶ mass% oxygen

■ Structure

- In general, spinel layer and internal oxidation zone (IOZ)
- Magnetite is mostly missing, i.e., Fe is partially dissolved by the liquid metal (or eroded after Fe₃O₄ formation?)
- Inclusions of Pb and Bi inside the scale, especially after long exposure times

☐ Exceptional behaviour (oxidation)

Local selective leaching

☐ Selective leaching of Cr at 550° C

- Pb and Bi penetrate the scale at the steel/scale interface
- Local acceleration of mass (Fe) transfer as a result of liquid-state diffusion
- Depletion of oxygen in the liquid metal beneath the scale promotes preferential dissolution of Cr

Maximum local damage observed for T91-B

Kinetics of oxide-scale growth for T91-B at 550° C, 2 m/s and 10⁻⁶ mass% oxygen

Parabolic: $\Delta x^2 = k_2 t$

Parabolic after faster initial kinetics: $\Delta x^2 = k_2 t + C_2$

Logarithmic:

$$\Delta x = k_{log} \log(t + t_0) + C_{log}$$

Paralinear: $\frac{d\Delta x}{dt} = \frac{k_p}{2\Delta x} + k_1$

- Large scatter of the data in comparison to 450° C, especially for long exposure times
- Similar results for T91-A and T91-B

Movement of spinel surface (= oxide-scale surface) at 550° C, 2 m/s and 10⁻⁶ mass% oxygen

☐ Results of metallographic measurements

- Direction of movement not evident (no movement) up to 7500 h
- □ Indication of growth of the spinel layer above the initial steel surface (in position X₀) rather than spinel dissolution for >7500 h
- Further analyses needed for finding the most appropriate kinetic model for spinel growth

Data extrapolation for T91 at 550° C, 2 m/s and 10⁻⁶ mass% oxygen

Parabolic: $\Delta x^2 = k_2 t$

Parabolic after faster

initial kinetics: $\Delta x^2 = k_2 t + C_2$

Logarithmic:

$$\Delta x = k_{log} \log(t + t_0) + C_{log}$$

Only regular oxidation, selective leaching not considered.

	Exposure time (years)		
	5	10	
T91-A			
Δx_{SP} (µm)	62–67	87–95	
Δx_{ST} (µm)	64–93	83–131	
T91-B			
Δx_{SP} (µm)	63–82	88–116	
Δx_{ST} (µm)	63–92	86–130	

Extrapolated using the parabolic models with $C_2 = 0$ and > 0, respectively.

Conclusions on the performance of T91 in flowing (2 m/s) oxygen-containing (10⁻⁶ mass%) LBE

	At 450° C	At 550° C
Formation of thin protective oxide scale	 Not observed for t ≥ 500 h 	 Minor aspect of short-term behaviour
Typical scaling behaviour of Fe-Cr alloys	 Magnetite, spinel and slight internal oxidation Paralinear models describe the growth of the magnetite and spinel layer fairly well Improved model for the implied transformation at the magnetite/spinel interface required 30–40 µm metal-recession and 20–60 µm scale-thickness expected after 10 years 	 In general, spinel layer and IOZ Magnetite mostly missing Large scatter of experimental data makes analysis of the kinetics difficult 80–130 µm metal-recession, 90–120 µm scale-thickness (without IOZ) expected after 10 years
Selective leaching (of Cr)	 Local accumulation of Pb and Bi inside the scale and at the scale/steel interface Slight Cr-depletion of the steel (for t ≤ 8000 h) 	 Expected local damage ~ 10-times higher than for pure oxidation Minimum for optimized steel micro-structure?

Acknowledgements

Funding by

KIT's Nuclear Safety Programme

and the

EURATOM 6th Framework Programme

(Contract no. FI6W-CT-2004-516520)

is gratefully acknowledged.