A Reevaluation of Radiation Damage Cross Sections

W. Lu¹, F. X. Gallmeier¹, P. J. Geoghegan¹, P. D. Ferguson¹ and M. S. Wechsler²

¹Oak Ridge National Laboratory, Oak Ridge, TN 37831 ²North Carolina State University, Raleigh, NC 27695

10th International Workshop on Spallation Materials Technology (IWSMT-10) Beijing, China Oct. 18-22, 2010

Contents

- Introduction and background
 - ♦ NCSU radiation damage cross section library
 - ♦ IAEA benchmark work on spallation models
- Results and Discussion
 - ♦ Helium cross sections
 - ♦ Hydrogen cross sections
 - ♦ Displacement cross sections
- Radiation damage production on SNS target vessel
- Summary

Future work

NCSU Radiation damage database -1

- Developed at NCSU in 2004, sponsored by LANL
- Cross sections (1
 - damage energy and displacement
 - helium production
 - hydrogen production
 - heavier transmutation products
- Intranuclear cascade models (INC)
 - ♦ Bertini, ISABEL and CEM2k
- Evaluated data sources
 - ♦ SPECTER (ENDF-5), ENDF-6 & LA150
- Experimental results (mainly for He and H CS)

NCSU Radiation damage database -2

Elemental targets

- ♦ Group 1: $_{12}$ Mg, $_{13}$ Al, $_{14}$ Si
- \diamond Group 2: $_{22}$ Ti, $_{23}$ V, $_{24}$ Cr, $_{25}$ Mn, $_{26}$ Fe, $_{27}$ Co, $_{28}$ Ni, $_{29}$ Cu
- Group 3: 40 Zr, 41 Nb, 42 Mo, 47 Ag, 50 Sn
 Sn
- $\ \ \, \diamond \ \ \, Group \ \ 4: \ \ _{73}Ta, \ \ _{74}W, \ \ _{79}Au, \ \ _{80}Hg, \ \ _{82}Pb, \ \ _{83}Bi$
- ♦ Group 5: ₉₂U

> Alloys

- ♦ AIMg3 (AI-2.72Mg-0.35Mn-0.25Fe)
- ♦ EP823 (Fe-12Cr-1.8Si-0.9Ni-0.7Mo-0.7Mn)
- ♦ Eurofer97 (Fe-9Cr-1.1W-0.4Mn)
- ♦ F82H (Fe-7.9Cr-2.0W-0.2V)
- ♦ HT9 (Fe-11.8Cr-1.0Mo-0.6Ni-0.5Mn)
- ♦ SS316L (Fe-17.5Cr-12.2Ni-2.5Mo-1.8Mn)
- ♦ T91 (Fe-8.6Cr-1.0Mn-0.2Ni)
- ♦ Zr-2 (Zr-1.36Sn-0.17Fe-0.13O-0.11Cr-0.07Ni)

IAEA benchmark work on spallation models - 1

- Work started in Feb. 2008. Results: <u>http://nds121.iaea.org/alberto/mediawiki-1.6.10/index.php/Main_Page</u>
- > INC models evaluated:
 - ♦ CEM03.02, CEM03.03
 - ♦ Cascade04, Cascade-ASF, Cascade-X
 - ♦ Geant4-Bertini, Geant4-BIC
 - ♦ INCL4.5-ABLA07, INCL4.5-Gemini, INCL4.5-SMM
 - ♦ ISABEL-ABLA07, ISABEL-Gemini, ISABEL-SMM
 - ♦ MCNPX-Bertini-Dresner
 - ♦ PHITS-Bertini, PHITS-jam, PHITS-JQMD
- > Evaluation categories include:
 - Neutron production (double differential CS, multiplicity)
 - *Light charged particles* (H, D, T, S, A) double differential CS
- Pion production, residue production, & excitation function ed by UT-Battelle U.S. Department of Energy

IAEA benchmark work on spallation models - 2, neutron production

S. Mashnik

INCL4.5-ABLA07

J. Cugnon, A. Boudard, A. Kelic, V. Ricciardi & D. Mancusi

F. Gallmeier & W. Lu

IAEA benchmark work on spallation models - 3, H production

S. Mashnik

INCL4.5-ABLA07

J. Cugnon, A. Boudard, A. Kelic, V. Ricciardi & D. Mancusi

F. Gallmeier & W. Lu

IAEA benchmark work on spallation models - 4, He-4 production

CEM03.02 S. Mashnik INCL4.5-ABLA07

J. Cugnon, A. Boudard, A. Kelic, V. Ricciardi & D. Mancusi **MCNPX-Bertini** F. Gallmeier & W. Lu

IAEA benchmark work on spallation models - 5, General findings

- While most INC models perform well in describing the neutron production spectra
- > For light charged particle emission [1]:
 - * "7+ of the codes lack emission of composite particles in INC phase and are not able to describe the spectra at all"
 - * "There is a trend that CASCADE-ASF and CEM03 codes perform best under 1 GeV incident and show weaknesses above"
 - * "There is a trend that INCL4.5 codes perform weaker below 1GeV and improve above 1GeV"

[1] F. Gallmeier, "The light charged particles benchmark evaluation", 2nd Advanced Workshop on Model Codes for Spallation Reactions, Saclay, France, Feb. 8-11, 2010

Results & discussion - Helium cross section, 1

Results & discussion - Helium cross section, 2

Ag

Fe

Results & discussion - Helium cross section, 3

Netional Laboratory

Managed by UT-Battelle for the U.S. Department of Energy

Results & discussion - Helium cross section, summary

- For light targets, although slightly different from the Bertini results CEM03 calculated helium cross sections are in a reasonable agreement with the experiment data up to 3.2 GeV
- For intermediate-weighted and heavy targets, CEM03 performs well for energies below 1 GeV but not better than NCSU results for energies above 1 GeV

Results & discussion - Hydrogen cross section, 1

Si

Mg

Managed by UT-Battelle for the U.S. Department of Energy

Results & discussion - Hydrogen cross section, 2

Managed by UT-Battelle for the U.S. Department of Energy

Results & discussion - Hydrogen cross section, 3

National Laboratory

Results & discussion - Hydrogen cross section, summary

- For light targets, CEM03 results show > 30% difference with the Bertini calculated cross sections in the NCSU database at ~ 200 MeV. The difference is reduced to ~10% for energies above 1 GeV.
- For intermediate-weighted and heavy targets, CEM03 results generally agree well with the Bertini calculated cross sections.
- As targets get heavier, CEM03 results become more and more close to the Bertinit calculated cross sections. For Z>79, CEM03 results are almost identical to those from Bertini.

Results & discussion - Displacement cross section, 1

Mg

ΑΙ

Managed by UT-Battelle for the U.S. Department of Energy

Results & discussion - Displacement cross section, 2

Results & discussion - Displacement cross section, 3

Hg

Pb

Results & discussion - **Displacement cross section**, **summary**

- For light targets, CEM03 results agree reasonable well with the CEM2k calculated cross sections in the NCSU database. The difference is < 10%.</p>
- For intermediate-weighted targets with Z<30, CEM03 results show constantly ~20% reduction for proton induced displacement cross sections and ~30% for neutron induced displacement cross sections compared to the CEM2k results.
- As targets with Z>30, CEM03 results are ~10% lower than CEM2k results at ~200 MeV. The gap is widened as incident energy increases and reaches ~30% at ~3 GeV.

Results & discussion - Displacement C.S. , possible explanation

- The PKA spectra shown here are the bombing results of 1000 MeV neutrons
- Compared to CEM2k, the results from CEM03 show less high energy recoils and more low high energy recoils.
- Correspondingly, CEM03 shortens the pre-equilibrium stage and extends the evaporation stage

for the U.S. Department of Energy

Recoil cross section (b/MeV)

Radiation damage on SNS target vessel

	Displacement (DPA)		Helium (appm/yr)		Hydrogen (appm/yr)	
	NCSU	CEM03	NCSU	CEM03	NCSU	CEM03
N induc.	11.5	11.5	131	149	929	880
P induc.	9.6	8.3	1746	1984	7375	6942
Total	21.1	19.9	1877	2133	8305	7823

Summary

- CEM03 is used to recalculate the displacement, He & H cross sections previously evaluated in the NCSU radiation damage database for energies > 150 MeV
 - CEM03 shows improvement in the helium cross section at energies below 1 GeV, still not good above 1 GeV
 - CEM03 calculated hydrogen cross sections show a surprising trend of agreement with the Bertinit results
 - In a rebalance of pre-equilibrium stage and evaporation stage to favor the emission of light charged particles, CEM03 shows a 20-30% reduction in the displacement cross section
- For He & H cross sections, NCSU radiation damage database stands well even though INC models have gone through major revision and improvement.
- For displacement cross sections, NCSU radiation damage database needs to be reevaluated at least for the sake of the statistical error.

Future work

Further investigation of the reduction in the displacement cross section calculated by CEM03

Use most recent INCL version to calculate He & H cross sections at energies above 1 GeV

