10th International Workshop on Spallation Materials Technology Oct.18-22, 2010, Beijing, China

Emrittlement Effects of LBE on Ferritic/Martensitic Steels After Irradiation in SINQ Targets B. Long^{1,2}, W.Gao², Y.Dai²

China Institute of Atomic Energy, Beijing 102413, China
Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Introduction

- LBE (lead-bismuth eutectic) is selected as target and coolant material for the targets of the spallation sources and the accelerator driven system (ADS) -for example MEGAPIE;
- The T91 FM (ferritic/martensitic) steel is the main candidate structural material

curtsy to Dr. W. Wagner

Introduction

> Our previous studies demonstrated that

a) The steel could sensitive to the LBE embrittlement effects when there were cracks or flows on the surfaces of specimens;

Introduction

Our previous studies demonstrated that b) The LBE embrittlement effects can be strongly enhanced by the hardening of the steels

Materials

Heat treatment: to simulate radiation hardening

- HT760 (T91): normalized at 1040°C for 1h, tempered at 760°C for 2h Microhardness HV0.05 = 220 :standard metallurgical state
 - ➡ HT600 (T91): normalized at 1040°C for 1h, tempered at 600°C for 2h Microhardness HV0.05 = 350
 - HT500 (T91): normalized at 1040°C for 1h, tempered at 500°C for 2h Microhardness HV0.05 = 450

Material	Cr	Ni	Mn	Мо	Ti	V	Si	Р	Nb	W	Та	С
T91 ¹	8.76	0.10	0.60	0.86	-	0.19	0.32	0.019	0.07			0.09
F82H	7.65	0.02	0.10	0.003	0.004	0.19	0.07	0.003	0.002	1.98	0.03	0.09

1. Heat-A387, from INDUSTEEL for MEGAPIE project

Materials and specimens

LiSoR loop

from PSI website

Irradiation parameters:

- > Beam energy: 72 MeV
- Inlet LBE temperature: 300°C
- ➢ Irradiation temperature: 325 − 525 °C
- > Irradiation dose: max. 0.48 dpa (displacement per atom)
- UL SCHERRER INSTITI Oxygen concentration in LBE: saturated

Irradiations at SINQ (STIPs)

STIP program is aiming at studying radiation damage in structural materials under a mixed spectrum of high-energy protons plus spallation neutrons.

Irradiation parameters:

- beam energy: ~ 570MeV
- irradiation temperature: 100 500 °C
- irradiation dose: max. 20 dpa
- He concentration: max. 1790 appm

LME test facility

➢ test temperature: 150 to 500 °C

> oxygen concentration in LBE: 1x10⁻⁶ wt.%

Comparison of SSRT tests results on HT760, HT600 and HT500

▲ The "ductility trough" of HT760 is 300-425°C

- **A** The "ductility troughs" of HT600 and HT500 cover a wider temperature range
- ▲ LBE embrittlement effects on tensile properties of FM steels can be strongly enhanced by the hardening of the steels (high strength → high risk to LME)

PAUL SCHERRER INSTITUT

SSRT on irradiated T91

(LiSoR-3 and -4)

▲ In Ar: irradiation-induced hardening; In LBE: LBE-induced embrittlement

PAUL SCHERRER INSTITUT

Irradiated T91

(STIP-3)

LBE-induced embrittlement occurs in the temperature range of 250-450°C

Irradiated T91

(STIP-3)

13.0 dpa/451°C in LBE at 450°C

cleavage <u>brittle</u> fracture

SSRT on irradiated F82H

(STIP-2 and -3)

Irradiated F82H

(STIP-2 and -3)

13.3dpa/250°C

in Ar at 250°C

mixed <u>ductile &</u> <u>brittle</u> fracture

cleavage & intergranular <u>brittle</u> fracture

Comparison of SSRT tests results on irradiated specimens

▲ Irradiated specimens suffer a drastic loss of ductility due to irradiation -induced embrittlement effect

Most irradiated specimens tested in LBE undergo a further reduction in ductility

3P bending tests on HT500

(tempering at 500°C)

▲ Fracture toughness is strongly reduced in LBE environment: only about 12 kJ/m² at T = 300°C

HT500

(tempering at 500°C)

Comparison of 3-p bending tests results on HT760, HT600 and HT500

- **HT760:** fracture toughness is reduced in LBE as compared to Ar
- **HT600 and HT500: fracture toughness is further reduced in LBE**
- ▲ LBE embrittlement effects on fracture toughness of FM steels can be strongly enhanced by the hardening of the steels (higher strength → higher risk to LME)

3-p bending test on irradiated T91

(STIP-1 and -3)

- **Tested in Ar: irradiation induced embrittlement effect**
- **Tested in LBE: a further embrittlement effect by LBE is observed**

Irradiated T91 (STIP-1 and -3)

J-R curves

- ▲ J values of irradiated specimens are much lower than those of unirradiated ones
- ▲ J values are further reduced by LBE

Comparison of 3-p bending tests results on irradiated specimens

- The fracture toughness of irradiated specimens is reduced by irradiation-induced embrittlement
- ▲ The fracture toughness of irradiated specimens decreases further as a result from exposure to liquid LBE

Conclusions

- The ductility trough of the T91 FM steel in the standard heat treatment state is 300-425°C. For tue first time, the ductility trough of the T91 steel in LBE is determined.
- The LBE embrittlement effects can be strongly enhanced by the hardening of the steels
- The combination of irradiation-induced embrittlement with LBE-induced embrittlement may give rise to unexpected premature failure. Therefore, it should deserve a great attention.

Acknowledgments

- **>** To my supervisors Dr. Yong Dai and Prof. Nadine Baluc
- To Drs Freiderich Groeschel, Heike Glasbrenner and Werner Wagner of ASQ (PSI), to Dr.Thierry Auger (France), Dr. Jours Van de Bosch (Belgium), Dr. Peter Hosemann (USA)
- > To Drs. Robin Schaeublin, Philippe Spaetig and Pirrer Marme of CRPP-EPFL
- To Mr. Roger Brun, Rudolf Thermer, Ms. Julijana Krbanjevic, Velmira and Eugine, to Mr. Rudolf Schwarz, Hans Leu and Andrej Bullemer, Hartmut Reuning, to Ms. Renate Bercher and Caroline Gavillet

10th International Workshop on Spallation Materials Technology

Oct.18-22, 2010, Beijing, China

Proposed mechanism

