Material Loss Rate for Tungsten Irradiated with 800 MeV Protons

Stuart A Maloy¹, Walter F. Sommer¹, R. Scott Lillard¹, Frank D Gac¹, Gordon J. Willcutt¹, A. Nelson¹, and McIntyre R. Louthan²

¹Los Alamos National Laboratory

²Savannah River National Laboratory

Irradiation of Pure Tungsten in Proton Beam Revealed high Corrosion Rate

- •1/8 in diameter rods
- •19 rods per bundle
- Cooled with flowing water
- •Water inlet Temperature ~30C, Delta T~10C
- Max. W surface T-~166C
- System pressure = 13bar
- Coolant velocity ~ 2.9 m/s
- Water ph during operation ~ 4.5

Decrease in Diameter of Bare Tungsten Rods Confirmed Tungsten Corrosion Rate

- Capsule irradiated for 2 months in 800 MeV, 1 mA proton beam (1.32x10²¹ p/cm²)
- Measured the diameter of all 19 tungsten rods in the leading rod bundle.
- The loss of tungsten on rods scaled with Gaussian beam shape.
- Measured Helium concentration of ~740 appm

Corrosion Rates Measured on Samples from Corrosion Insert

Out-of-Beam Weight Loss Specimens

W/Ti and W/Re Samples

Corrosion Probes and In Beam Wt. Loss SCC Specimens

Beam Center

Installed During Accelerator Break (11/96-2/97)

Contained In-beam corrosion probe of Inconel 718

Cooled with separate controlled water system

- Bubbled Hydrogen during irradiation
- Used High resistivity water
- pH=4.5

Contained weight loss samples in proton beam and out-of-beam.

Contained U-bend Stress corrosion Cracking specimens

Corrosion probes placed above insert to measure corrosion rate in irradiated water.

Set-up of Corrosion Insert

Beam

 Coupons irradiated in '97 APT irradiation for ~4 months

 Separate water system used for cooling samples

> Incident Beam, 800 MeV, 1 mA p+ beam Calculated energy at this insert is ~400 MeV

Corrosion Coupon Set-up

 Corrosion Measurements made on tantalum, tungsten and 316L corrosion coupons after irradiation in the LANSCE beam

Corrosion Rates Measured for W, Ta and 316L

- Dose calculated ranged from 0.02 to 2.0 dpa
- Corrosion was only observed for the W samples
- Calculated flow rate was 1.0 m/s

			_		
Probe	Material	Location	Neutron	Proton	Total dpa
number			Fluence	fluence	
34	SS316	In-beam	1.74E+20	2.14E+20	0.6229
33	W	In-beam	2.03E+20	2.85E+20	2.0177
36	Та	In-beam	2.30E+20	2.76E+20	1.8373
40	SS316	Out-of-beam	8.56E+19	1.31E+18	0.02796
42	W	Out-of-beam	7.98E+19	1.02E+18	0.03334
45	Та	Out-of-beam	7.78E+19	9.55E+17	0.02254

Sample tube #	Material type	Weight before	Weight after	Weight	Average
		irradiation	irradiation	Change	Corrosion Rate
		(g)	(g)	(g)	(µm/yr)
33	tungsten	5.175	4.8403	-0.335	65
34	316L SS	4.628	4.6276	-0.000	
36	tantalum	8.515	8.514	0.001	
40	316L SS	4.499	4.4992	0.000	
42	tungsten	5.202	5.0899	-0.112	22
45	tantalum	8.532	8.5329	0.000	

Cladding of LANSCE Tungsten Neutron Scattering Target with Tantalum

Plans underway to Clad MLNSC Target with Ta

- Main reason is to reduce activity for the water cooling system
- Initial HIP bonding tests at 1500C were successful
- Plan to have new targets fabricated by March 2009

- Tungsten target 'pucks
- Light water coolant
- Tantalum cladding

Summary/Conclusions

- Very high corrosion rates observed for tungsten under high energy proton irradiation
- Calculated tungsten removal rates of ~1.9 atoms/proton for ~760MeV protons.
- Corrosion coupons of W, Ta and 316L analyzed after irradiation
 - No corrosion observed for Ta or 316L
 - High corrosion rates observed for W
- Ti-coated W and W-27Re analyzed after Irradiation
 - Ti coating peeled off during irradiation
 - Significant weight loss measured on W-27Re specimen
- Cladding undertaken to eliminate tungsten corrosion problems
 - Cladding W target with 304L reduced corrosion rates
 - Plans underway to HIP Clad LANSCE target with Ta

