Commissioning and analyzing of TPC prototype integrated with UV laser

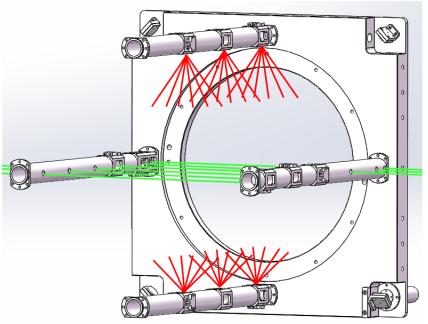
Huirong Qi

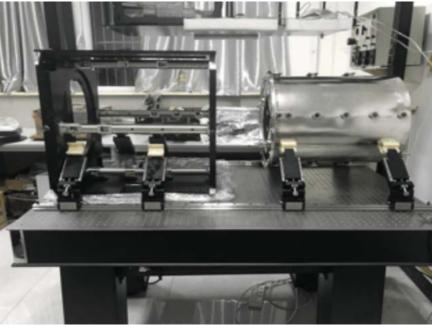
ZhiYang Yuan, Yiming Cai, Yue Chang, Zhi Deng, Yulan Li, Hui Gong, Wei Liu

Institute of High Energy Physics, CAS

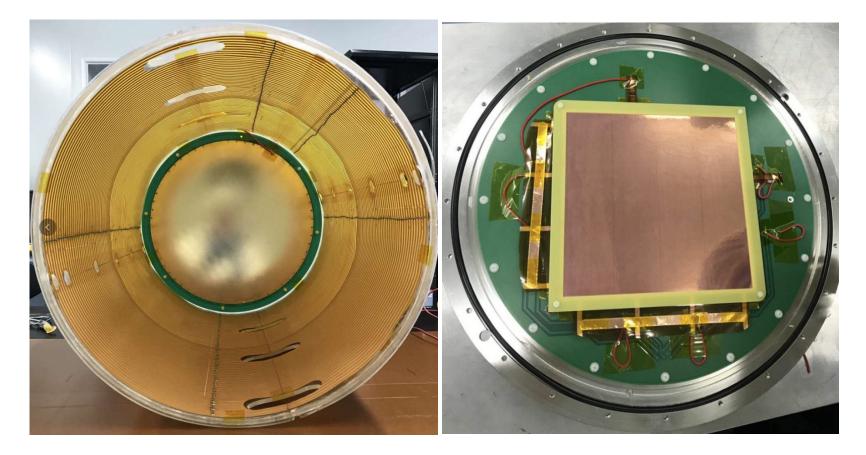
Tsinghua University

CEPC meeting, Feb., 10, 2021


Outline


TPC prototype
Update results
Plans of studies
Summary

Update of the TPC prototype


TPC Prototype sketch

- Main parameters
 - Drift length: ~500mm, Active area:
 200mm²
 - □ Integrated 266nm laser beam
 - MPGD detector as the readout
 - TPC system devices: Fieldcage+
 Pads readout
 - **TPC** cathode: -10kV
 - Drift field=200V/cm
 - Readout pad(anode) is designed to 0V
 - **Readout pad:1280 channels**
 - Detector gain: 2000-6000
 - Working mixture gas:
 - Ar/CF4/iC4H10=95/3/2
 - TPC chamber+Filedcage
 +Endplate+Laser device
 +High voltage

Endplate and field cage

Simulation

- □ Hole size VS length of less than 99% of electric field
- □ <12mm of hole size in this prototype along drift length

Electronics

Amplifier and FEE

CASAGEM chip
16Chs/chip
4chips/Board
Gain: 20mV/fC
Shape time: 20ns

FEE Electronics

Electronics and DAQ

- **DAQ Commissioning**
 - **• FPGA+ADC**
 - □ 4 module/board
 - 64Chs/module
 - □ Sample: 40MHz
 - **1280chs**
 - Signal: >16
 sample points
 - Zero data compression
 - 1280 readout channels
 - Noise: <10mV@pp</p>

FEE Electronics and DAQ setup photos

UV laser	device		Model	Nano SG 150-10	
Gaussian	laser device	Max. Repetition Rate (Hz)	10		
	Nd-LAG UV lase	er	Output Energy (mJ) 1064nm 532nm	150 75	
	Wave length: 266	nm	355nm 266nm	30 15	
	Quantel Q-smart	Lasers	213nm	3	
	Frequency: 20Hz	Z	Parameter Pulse - pulse Stability (±%) Beam diameter (mm)	2 5	
	Power: <20mJ/p	ulse	Beam divergence (mrad) (1) Fit to Gaussian N/F field (%)	<0.7 70/95	
	Trigger: BNC ou	tput	M ² Pulse length @ 1064nm (ns) Pointing stability (µrad) ⁽²⁾ Lamp life (pulses) Timing jitter (ns) ⁽³⁾	<2 4-6 <100 >5x10 ⁷ <0.5	
Laser (256) Read (2556) Binn (22) Binn) (22) Binn (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) Binn) (22) (22) (22) (22) (22) (22) (22) (COOLANT OUTPUT- INPUT- INPUT-	582 mm [15] 463 mm [19] 195 mm [7,7]	Services Voltage (VAC) Frequency (Hz) Power Ambient ⁽⁴⁾ (°C) Consumption (W)	90-250 47-63 Single Phase 5-35 <350	
灯泵脉冲激光器头	倍频模块	激光器电源	PSU Type	LPU250 ⁽⁵⁾	

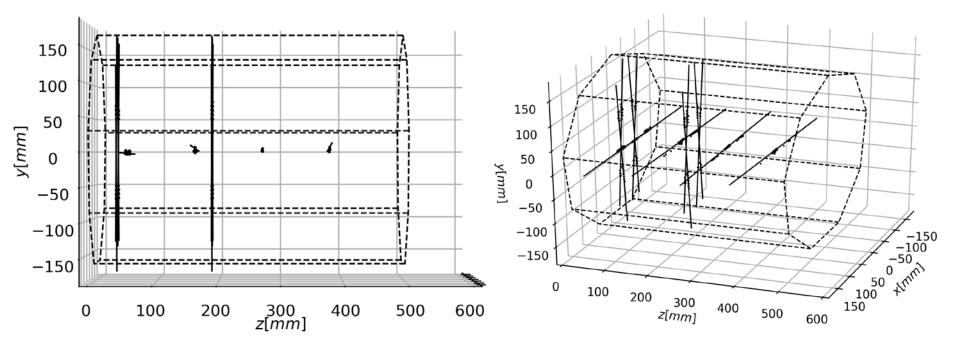
Parameters of the UV laser device

5

High voltage

- DAQ Commissioning
 - **• FPGA+ADC**
 - □ 4 module/board
 - 64Chs/module
 - □ Sample: 40MHz
 - **1280chs**
 - Signal: >16 sample points
 - Zero data compression
 - □ 1280 readout channels
 - □ Noise: <10mV@pp

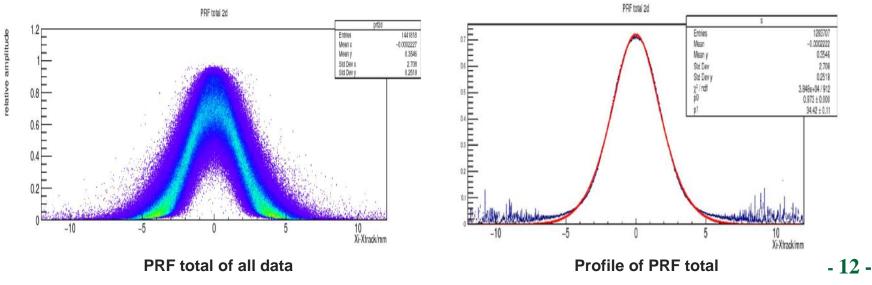
	10TER System					10,825				RIS
System Disemnet Configure	Custos	Name -	IOSet	V05et	IMon	VMon	Pw	Status RUp	RDWi	• Beard00 - A0743501 - [153
515527	01.001	3u	10.00 uA	2025.000 V	0.000 uA	2024.850 V	On	5 Vps	10	- Britago - Koresser - Das
Dervenas Burricasses	01.002	3d	10.00 uA	1675.000 V	Au 000.0	1675.030 V	On	5 Vps	10	AG7435BP
2. 168. 0. 1	01.003	2u	10.00 uA	1375.000 V	0.000 uA	1374.845 V	On	5 Vps	10	Wadule
RETITION	01.004	2d	10.00 uA	1025.000 V	Au 000.0	1025.235 V	On	5 Vps	10	-
ADVANCED FEATURES	01.005	10	10.00 uA	725.000 V	0.000 uA	725.010 V	On	5 Vps		3dStatus XVNasi
SSTORS CRAFE TECH STS HAP 13PD 13PD	01.006	1d	10.00 uA	375.000 V	Au 000.0	374.945 V	On	5 Vps		CUVax 4023 -
المحمد الله الله الله الله الله الله الله الل				CAEN	GE 20					Provide: A7743097 (1) A7743097 Provide: A7743098 Provide: A7743098 Provide: A7743098 Provide: A774309 Provide: A774309 Provide: A774309 Provide: A774309 A774309 A774309 A774309 A774309


High voltage and controller

Commissioning and studies

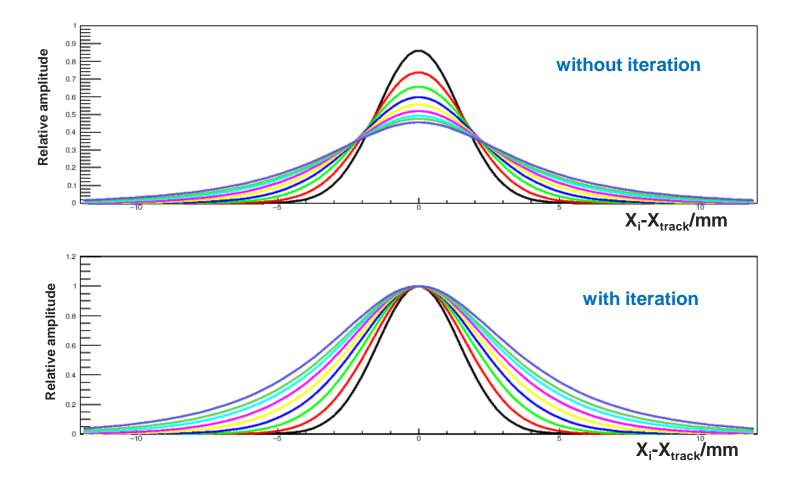
Prototype working well

Laser tracks in chamber@T2K gas

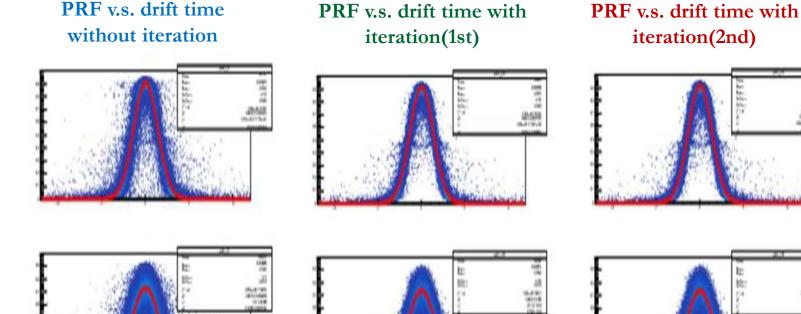

- □ Same of working gas@T2K, same of high voltage, same of test conditions
- **Different of GEMs@ 320V**
- **Triple GEMs to double GEMs**
- No discharge

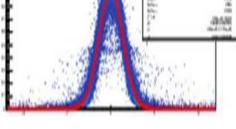
PRF analyzing

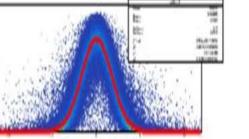
 Pad Response Function (PRF): a general function used to describe the charge distribution and to determine the hit position

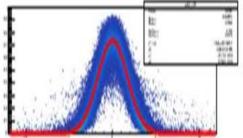

$$PRF(x, r, w) = \frac{\exp[-4\ln 2(1-r)x^2/w^2]}{1+4rx^2/w^2}$$

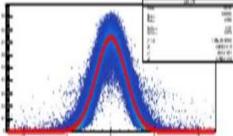
- A combination of a Gaussian with a Lorentzian function.
 - □ r=1, the PRF becomes a pure Lorentzian.
 - □ r=0, the PRF becomes a pure Gaussian.
 - Both the Lorentzian and the Gaussian share the same width parameter w.

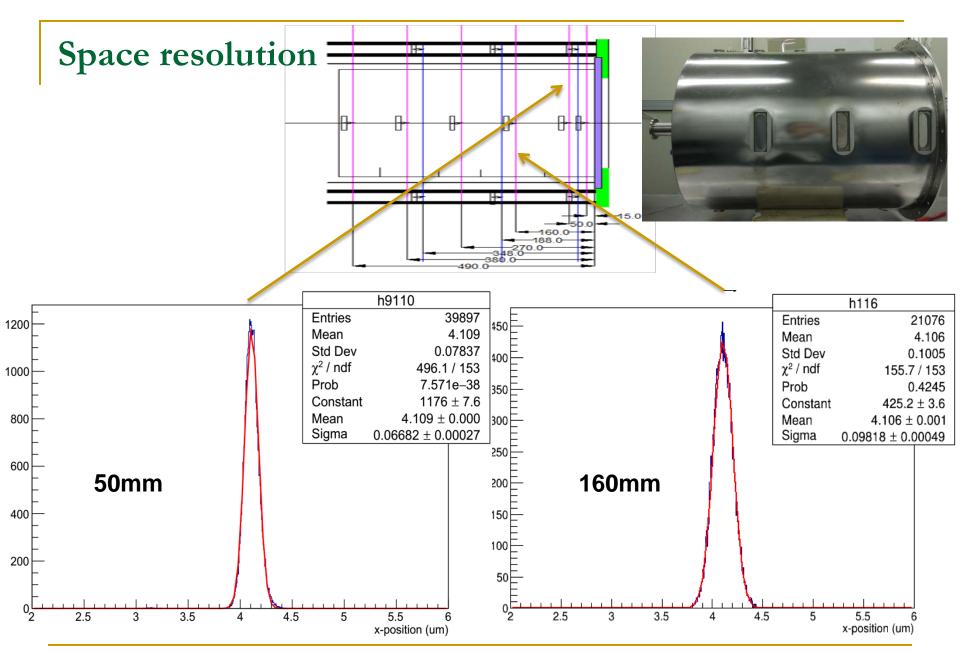

PRF v.s. Z/drift time - calibration

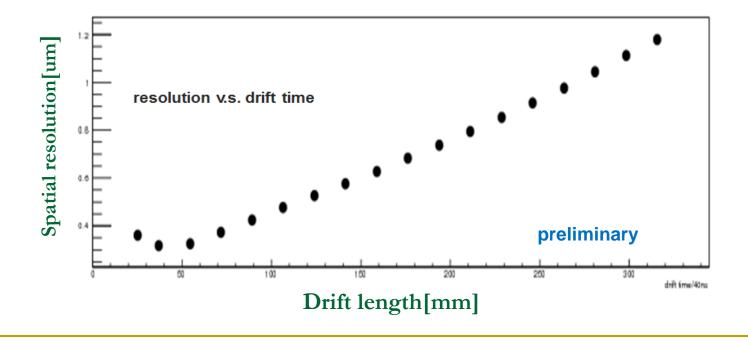

- □ X-track: reconstruction by the double fits
- **Pad Response Function (PRF):** need the calibration with X_i - X_{track}

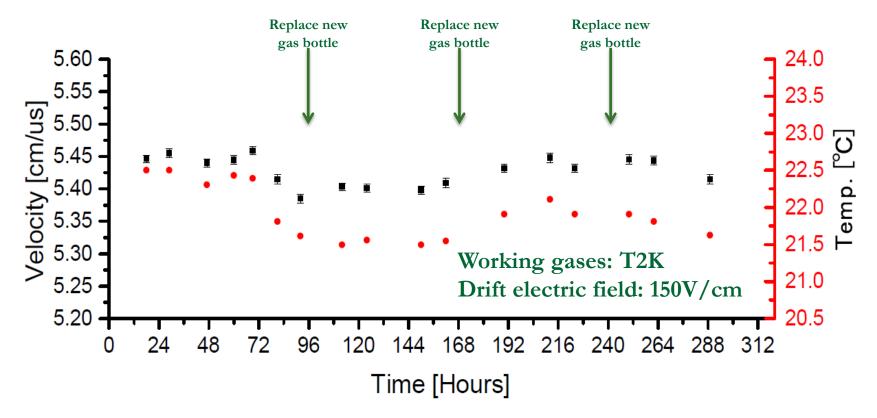



PRF analyzing- calibration


Pad Response Function (PRF): a general function used to describe the charge distribution and to determine the hit position

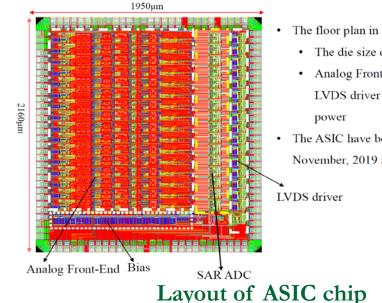




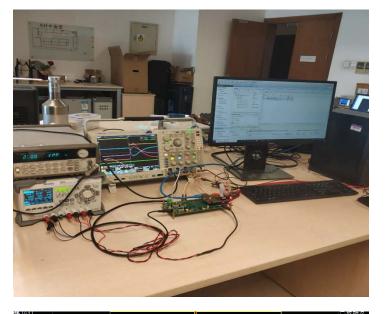

Space resolution at the different drift length

Simulation the spatial resolution

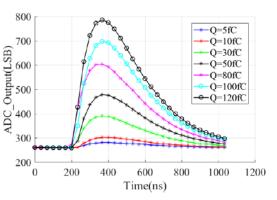
- **T2K** operation gases
- Drift field: 220V/cm
- **D** Pad readout option
- **Framework from LCTPC software package**
- □ N_{eff}: 80-100

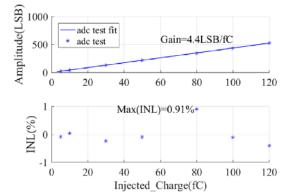

Drift velocity measurement

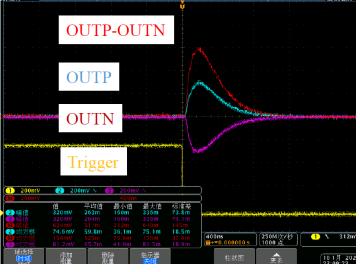
- **u** Two weeks of continuous testing
- Room temperature recorded
- Comparison of the drift velocity and the temperature
- **266nm UV** laser can work well when it can be as the monitor


Plans the further studies

Tests of the ASIC chip from Tsinghua


- The floor plan in layout :
- The die size of 1950 μm x 2160 μm
- Analog Front-End , SPI, SAR ADC, LVDS driver are supplied by separate
- · The ASIC have been taped out in


November, 2019 and is being evaluated



• Transient outputs

• The linearity (a) gain = 10 mV/fC

Gain = 4.4 LSB/fC = 4.4 x 2.34 mV/fC = 10.3 mV/fC

Test of the signals - 19 -

Results of ASIC chip

- A 16 channel low power readout ASIC for TPC readout have been developed
 - The power consumption is 2.33 mW/channel:
 - $P_{AFE} = 1.43 \text{ mW/channel}$
 - $P_{ADC} = 0.9 \text{ mW/channel} @ 40 \text{MS/s}$
 - ENC = 852 e @ Cin=2 pF, gain=10 mV/fC and can be reduced to 474 e using digital trapezoidal filter
- Future Plan
 - More ASIC evaluations: higher sampling rate, more detailed noise test, test with detectors...
 - Low power digital filter and data compression in FPGA/ASIC

Summary

- Some update results of TPC prototype have been studies, the prototype is working well, and the results indicated that 266nm UV laser beams system will be very useful in the TPC prototype R&D.
- More studies are ongoing and the update analyzing will been done.
- The TPC detector module and prototype will designed, assembled and commissioned with the new low power consumption ASIC chip from Feburary.

Summary

- Some motivations of TPC detector for collider at Z pole run listed.
- Some update results and performance of IBF, dE/dx, drift velocity listed.
- UV laser will be very helpful in the TPC module and prototype R&D.

Thanks for your attention.