Trigger Simulation Activities

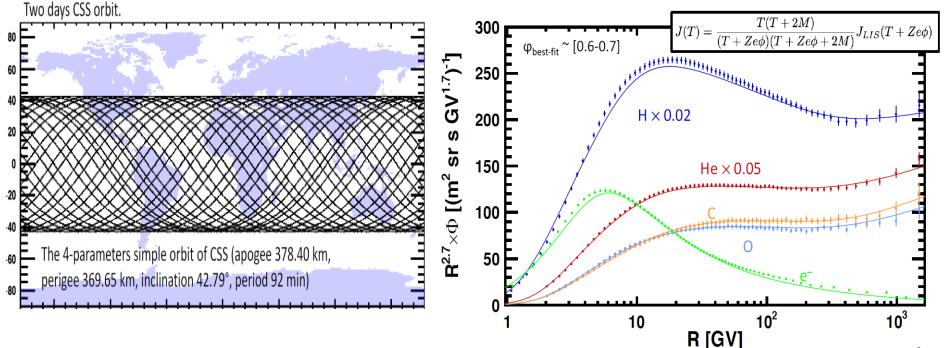
Jorge Casaus on behalf of CIEMAT / INFN-Bologna

HERD 9th International Workshop, 22-23 February 2021

Introduction

- □ The aim of the trigger simulation work is to develop a **reliable trigger design** that is able to cope with **HERD science goals** and **capabilities.** This program requires
 - up-to-date modeling of the expected fluxes of the relevant particle species, including charged (protons, light nuclei, e-, e+) and γ-rays
 - □ A reliable modeling of the **detector materials** and **response**
 - Definition of an optimized **trigger logic** to maximize the HERD science reach
- □ Our **strategy** is to **develop this program** in close collaboration with the other institutes involved in this task and to **provide the tools** to the HERD collaboration
- □ This effort is coordinated within the HERD Trigger Working Group, which has held bi-weekly meetings since April 2020
- □ We have made use of **HerdSoftware** to produce the **simulated samples** and our goal is to integrate the **trigger algorithms** inside HerdSoftware for public use
- Our starting point has been the baseline trigger definitions developed at IHEP and included in the HERD proposal

Baseline Trigger Definitions


The **Global Trigger (GT)** is obtained from the logical combination of the particlededicated sub-triggers, built from the deposited energies in **CALO** and **PSD**

- □ HE (High Energy particle) requires high energy deposition in CALO
- □ LEG (Low Energy photon) low energy deposition in CALO and PSD veto
- **LEE (Low Energy Electron)** low energy deposition in CALO
- **Unbiased:** low energy in CALO, for trigger efficiency evaluation
- □ Calibration Trigger: low energy deposition in CALO.

Revision of Input Cosmic Ray Fluxes

Space Environment Simulator (https://gitlab.cern.ch/oliva/ses)

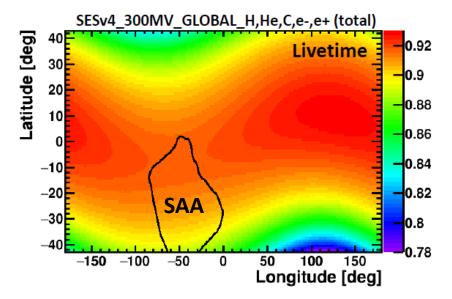
- Satellite Orbit (position and velocity vectors as function of time)
- Coordinate Transformation
- Particle Fluxes

Expected CR Rates and Global Trigger Rates

- The output of latest SES orbit simulation release (v4) is now available at https://srm.ciemat.es:2880/pnfs/ciemat.es/data/public/herd/fluxes_for_trigger/ses/v4/
- A simple ROOT macro to compute expected trigger rates using SES outputs & trigger acceptances for different particle species is also available at <u>https://srm.ciemat.es:2880/pnfs/ciemat.es/data/public/herd/fluxes_for_trigger/ses/tools/</u>

<pre>// Print the average trigger ra // species and subtriggers</pre>		
<pre>void PrintTriggerRates(TString</pre>	SESvers = DefaultSESver SESsmod = DefaultSESsmo	

67% L108


(C/l Abbrev)-----

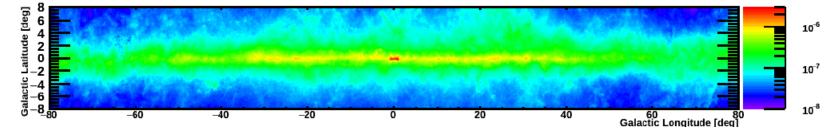
UU-:---F1 SESRates.h

- Average rate for GLOBAL trigger including H, He, C, e-, e+ contribs. and minimum solar modulation is below 100 Hz
- Under cutoff contribution is 5 Hz dominated by e- contribution

root [2] P	rin	tTrigger	Rates("v	4","300MV")	>>>>> Sub	Trigger :	UNB <<	<<<<<
>>>>>> Si						Total	Under	Above
		Total	Under	Above	Н :	1027.17	2.51	1024.66
н		36.67	0.00	36.67	He :	279.40	0.00	279.40
He		19.17	0.00	19.17	C :	10.45	0.00	10.45
C		2.27	0.00	2.27	electron :	125.56	105.10	20.46
electron		0.65	0.00	0.65	positron :	13.80	12.82	0.98
positron		0.02	0.00	0.02	ALL Part. :	1456.38	120.43	1335.94
ALL Part.		58.78	0.00	58.78	>>>>> Sub	Trigger :	CALIB	<<<<<<
>>>>> Si	ubT	rigger :	LEE <<<	<<<<<<		Total	Under	Above
		Total	Under	Above	Н :	229.63	0.62	229.01
		23.41	0.10	23.31	He :	24.36	0.00	24.36
He		6.05	0.00	6.05	С:	0.06	0.00	0.06
_		0.23	0.00	0.23	electron :			
electron		5.10	4.25	0.85	positron :			
positron		0.49	0.45	0.04	ALL Part. :		8.00	
ALL Part.		35.28	4.79	30.48	>>>>> Sub			
>>>>> Si	ubT					Total	Under	
		Total	Under	Above	н :		0.10	
		0.01	0.00	0.01	He :			
He		0.01	0.00	0.01	C :			
_		0.00	0.00	0.00	electron :			
electron		0.02	0.01	0.00	positron :			
positron		0.00	0.00	0.00	ALL Part. :			
ALL Part.		0.03	0.02	0.02	ALC FULL -	55.47	4.55	

Expected CR Rates and Global Trigger Rates

Excluding the of time spent in the SAA (7.6%)

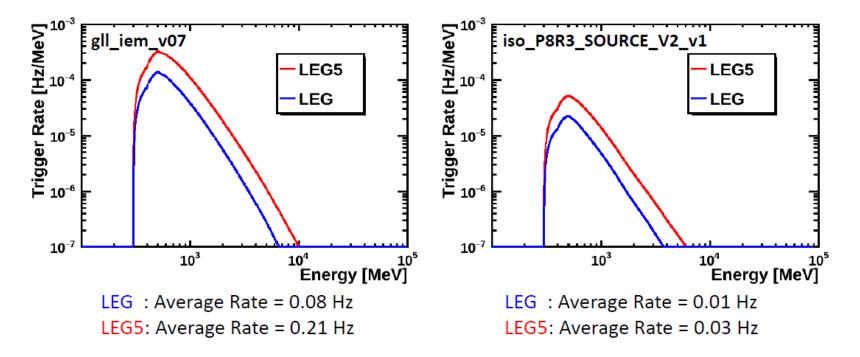

For 1.25 ms dead time (800 fps), the average livetime out of the SAA is 88.4% with a minimum livetime along the orbit of 78.2%

□ The overall effective exposure time is 81.7%

gger nates	
root [1] PrintLivetime(1.3	
Open File : ./Rates SESv4	300MV/H GLOBAL.root
Open File : ./Rates_SESv4	300MV/He GLOBAL.root
Open File : ./Rates_SESv4	300MV/C GLOBAL.root
Open File : ./Rates SESv4	300MV/electron_GL0BAL.root
Open File : ./Rates SESv4	300MV/positron GLOBAL.root
Open File : ./SAA/SAA.roo	
Average Trigger Rate	: 95.5 Hz
Average Rate (DT=1.25 ms)	: 84.5 Hz
Average Livetime	
Maximum Trigger Rate	: 222.6 Hz
Maximum Rate (DT=1.25 ms)	: 174.2 Hz
Minimum Livetime	: 78.2%
Minimum Trigger Rate	: 61.6 Hz
Minimum Rate (DT=1.25 ms)	: 57.2 Hz
Maximum Livetime	: 92.9%
>>> Exclude South Atlantic	c Anomaly <<<
Time Fraction Out of SAA	: 92.4%
Average Trigger Rate	: 96.4 Hz
Average Rate (DT=1.25 ms)	: 85.2 Hz
Average Livetime	: 88.4%
Maximum Trigger Rate	: 222.6 Hz
Maximum Rate (DT=1.25 ms)	
Minimum Livetime	: 78.2%
Minimum Trigger Rate	: 61.6 Hz
Minimum Rate (DT=1.25 ms)	: 57.2 Hz
Maximum Livetime	
Effective Exposure Time	: 81.7%

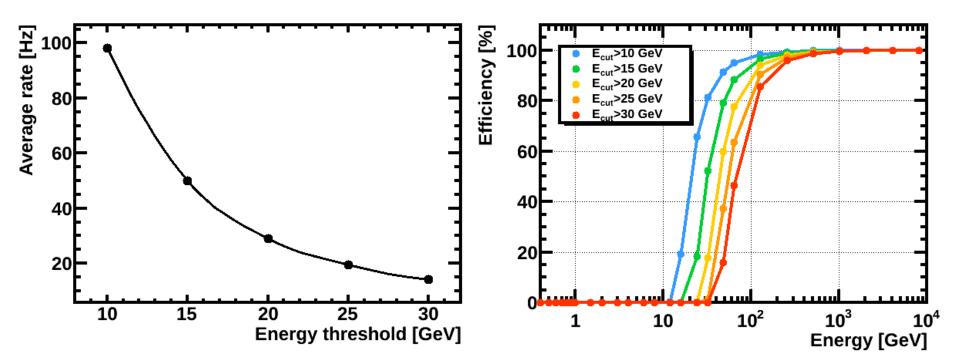
Expected *γ*-ray Rates and LEG Trigger Rates:

- Compute yearly averaged rates to simplify the problem
- Factorize the ingredients:
 - Differential Acceptance in local coordinates evaluated for individual pixels within the field of view to account for specific trigger definition and/or event selection efficiencies.
 - Exposure Maps in galactic coordinates obtained from CSS orbit simulation for each individual pixel within the field of view
 - □ Intensity Maps in galactic coordinates I(I,b,E) encompassing all relevant contributions to the Galactic diffuse emission (Fermi-LAT model)
 - This **factorized scheme** allows to easily reevaluate the expected average rates from diffuse γ -ray emission for different effective area and/or source models



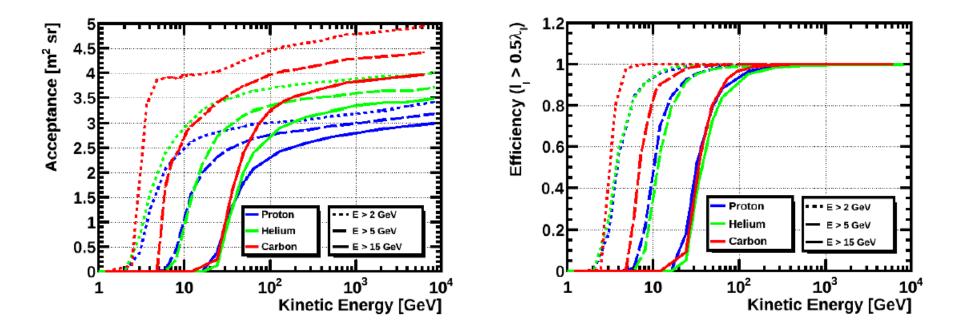
Expected *γ*-ray Rates and LEG Trigger Rates:

Evaluate expected LEG trigger rate using definitions based on HERD proposal


- energy_in_TOP_shell > 350 MeV AND energy_in_ANY_PSD_side < 1 MeV
- energy_in_ANY_shell > 350 MeV AND energy_in_ANY_PSD_side < 1 MeV

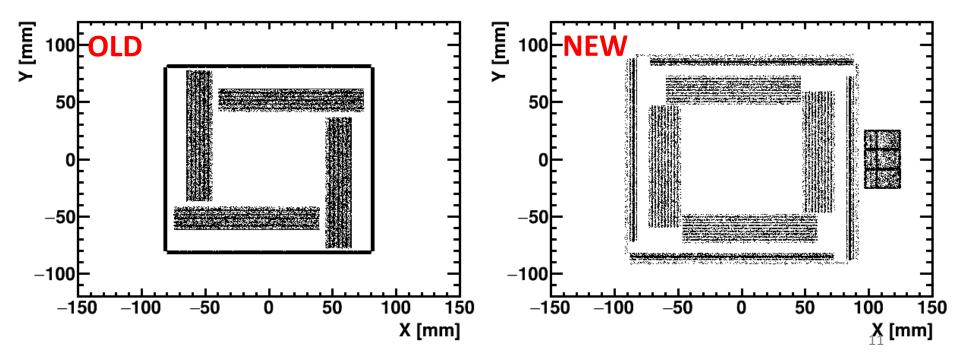
□ Average trigger rates can be evaluated from the intensity and exposure time maps $R(E) = 1/T \sum_{i} A_{i}(E)$ ($\sum_{i,b} T_{i}(I,b) \phi(I,b,E) \Delta I \Delta b$)

HE Trigger Optimization: Acceptance

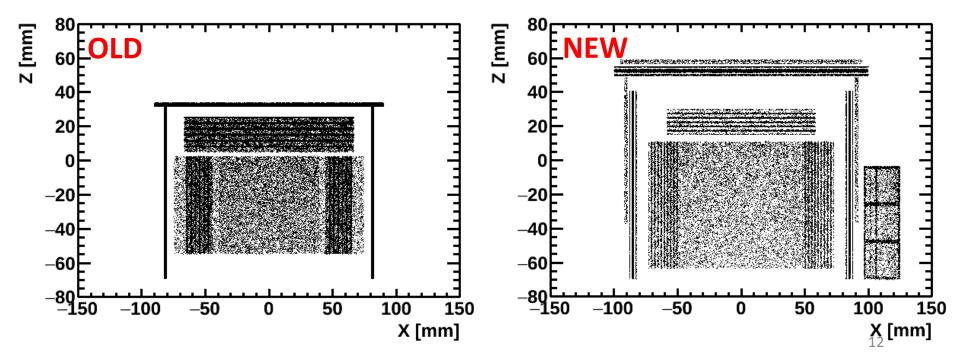

- Inspection of the HE trigger efficiency on proton samples with contained showers shows that current definition is optimized by extending the CALO core region to the full CALO
- □ HE trigger rate can be tuned by increasing the energy threshold

HE Trigger Optimization: Energy Range

► HE trigger extension to **lower energies** provides additional **calibration samples** and opens a window to **new science topics** with HERD


► HE trigger can be extended to lower energies by setting different **low energy thresholds**

► Each energy threshold may define a different sub-trigger. The increase in the trigger rate can be regulated by setting different prescaling factors according to the science/operation constraints


Simulated HERD Geometry

- All previous studies of the trigger performances have been carried out on the simulation implementing the original geometry as described in HERD proposal
 Latest modifications in HERD geometry and a first CSS description have been implemented in HerdSoftware
- We have launched a small MC production to start a systematic study of the trigger performances with the new geometry compared to our previous results
 At this stage CSS simulation is not enabled so as to have a direct comparison with the results obtained with the old geometry

Simulated HERD Geometry

- All previous studies of the trigger performances have been carried out on the simulation implementing the original geometry as described in HERD proposal
 Latest modifications in HERD geometry and a first CSS description have been implemented in HerdSoftware
- We have launched a small MC production to start a systematic study of the trigger performances with the new geometry compared to our previous results
 At this stage CSS simulation is not enabled so as to have a direct comparison with the results obtained with the old geometry

Trigger Acceptance

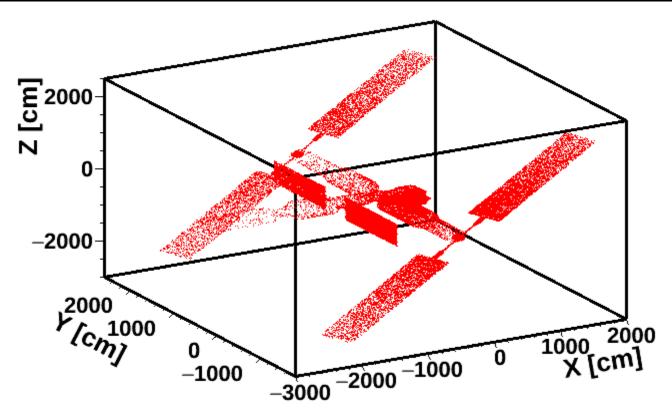
- □ The differences of **optimized trigger** definition on **new** *vs.* **old** geometries for the simulated particle species are consistent with
 - □ Small increase of upstream material budget (increased UNB threshold) and overall detector size (increased LEE and CALIB acceptances)
 - □ Less efficient PSD veto (1 layer + gaps between scintillator tiles) resulting in an increased **LEG** acceptance for all particle species
- □ Although trigger settings are still to be tuned for this geometry (e.g. PSD veto), the impact on the **GLOBAL** trigger rate is minor
- lacksquare In particular, the contribution of charged particles to the LEG rate is ~1Hz $^{(*)}$

OLD				NEW			
>>>>> SubT	rigger :	GLOBALO	pt <<<<<<<	>>>>> Sub7	Frigger :	GLOBALO	pt <<<<<<<
	Total	Under	Above		Total	Under	Above
н:	115.36	0.42	114.94	Н :	118.69	0.41	118.29
He :	44.43	0.00	44.43	He :	45.98	0.00	45.98
C :	4.27	0.00	4.27	C :	4.30	0.00	4.30
electron :	15.06	11.42	3.64	electron :	16.18	12.43	3.74
positron :	1.51	1.35	0.16	positron :	1.64	1.48	0.16
ALL Part. :	180.63	13.19	167.44	ALL Part :	186.79	14.32	172.47

^(*) For consistency with baseline definition LEG trigger is defined for top side. Acceptance and expected rates should be multiplied by a factor ~3 if lateral sides are included ¹³

CSS Geometry Configuration

Add the CSS


/herd/geometry/parametric/general/spaceStation css

Set the angles of the CSS solar panels

The range of all rotation angles within [-180, 180) degree, and the angle increase with # left-hand rule respect to the rotation axis. By default there's no rotation (all angles # equal to zero degree), and all panels are in horizontal position (parallel to the XY # plane).

/herd/geometry/parametric/css/spSpinAngleM1M2 90 deg
/herd/geometry/parametric/css/spSpinAngleMC 90 deg
/herd/geometry/parametric/css/spRevAngleM1M2 50 deg

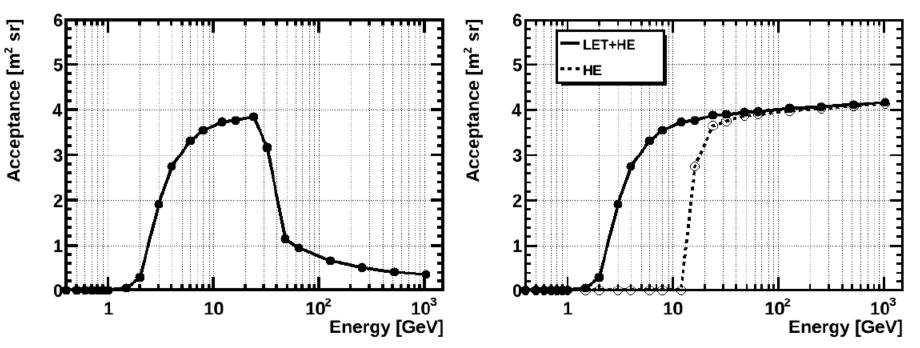
Spin angle of all the panels on modu
Spin angle of both panels on module
Revolution angle of both couples of

Trigger Rates

>>>>>>>	SubTri	gger :	GLOBALO	pt <<<<<	<<<<<
			Total	Under	Above
CSS None	- 2m	Н :	118.06	0.32	117.74
CSS Nom.	- 3m	Н :	118.99	0.39	118.59
CSS Nom.	- 45m	Н :	117.24	0.37	116.87
CSS Max.	- 45m	Н :	114.88	0.34	114.55
>>>>>>>	SubTri	gger :	020_GL0	BALOpt <	<<<<<<
			Total	Under	Above
CSS Nom.	- 3m	H :	136.16	0.45	135.71
CSS Nom.	- 45m	Н :	132.97	0.42	132.55
CSS Max.	- 45m	Н :	131.41	0.39	131.02
>>>>>>>	SubTri	gger :	035_GL0	BALOpt <	<<<<<<
			Total	Under	
	- 3m			0.49	
	- 45m	Н:		0.44	149.33
CSS Max.	- 45m	н:	147.86	0.42	147.44
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	SubTri	gger :	4pi_GLO	BALOpt <	<<<<<<
			Total		Above
	- 3m	Н :			238.73
CSS Nom.		Н :			233.37
CSS Max.	- 45m	н :	232.20	0.51	231.69

Evaluation with SES v4 shows consistent results for down-going proton rates

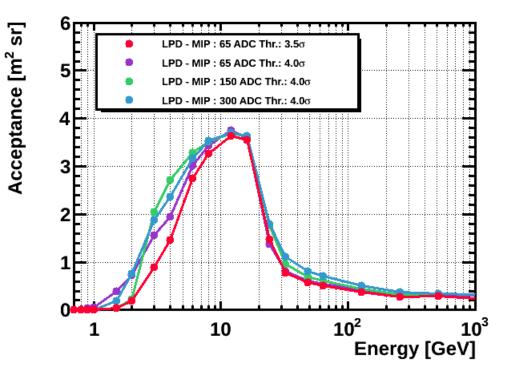
Extension ^(*) down to ~11.5° below horizontal (cos(θ) < 0.20) shows increase of 15% in expected rate


- Extension ^(*) down to ~20.5° below horizontal (cos(θ) < 0.35) shows increase of 30% in expected rate
- Isotropic acceptance (only valid for under cutoff flux) shows consistent increase in proton rate

^(*) Stoermer cuttoff transfer function evaluated for cos(q) < 0.20. Penumbra effects due to Earth blocking not included

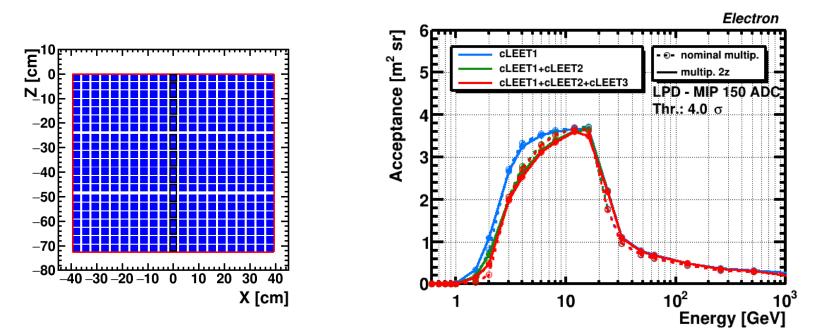
Low Energy Topological Trigger

The self-trigger signal from **CALO PD readout** allows to define simple **topological triggers** based on the **total multiplicity and x,y,z-projection multiplicities** that complement the triggers built from the energy deposition in CALO


A topological trigger for low energy electrons (LET) exploits the differences in the electron and proton showers in CALO Electron LET Trigger
Electron LET Trigger

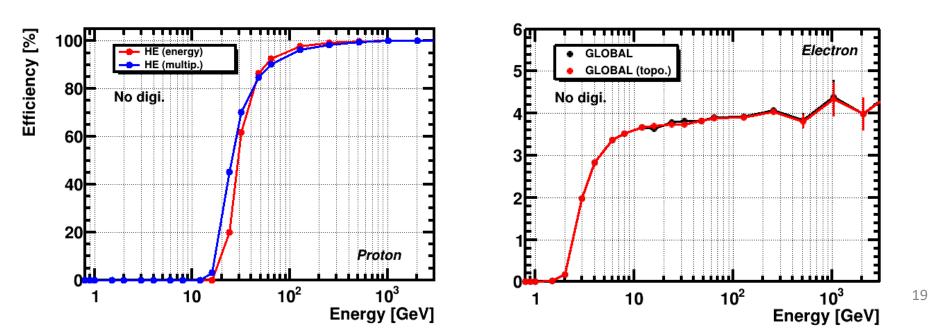
 High electron acceptance with a continuous overlap with the HE trigger and strong proton suppression at low energies to have a reasonable trigger rate.

Low Energy Topological Trigger


- The performance of the LEET trigger to a more realistic detector response has been investigated thanks to the simulation of the PD readout
 - □ The parameters of the trigger cuts have been optimized in 4 LPD configurations

The stability of each configuration has been also verified when the response has a channel by channel variation

Low Energy Topological Trigger


The impact of a reduced number of trigger channels (logical OR of 2 consecutive crystals in the same CALO column) in the HERD PD trigger system has been evaluated

no significant degradation in the performances is observed

More Topological Triggers

- Several topological triggers based on the total multiplicity and x,y,z-projection multiplicities of the CALO PD self-trigger signals have been investigated
 - □ High Energy based on multiplicity
 - □ High Energy Electron Trigger (HEET)
 - □ Low Energy Electron Trigger (LEET)
 - □ MIP Trigger
- Results show that topological triggers can complement (extend) the capabilities of those built from the energy deposition in CALO

Implementation in *HerdSoftware*

- **1.** The **implementation of the trigger algorithms in HerdSoftware** is at an advanced stage. The scheme follows the architecture and design agreed with the developers team
- **2.** The implementation has been done at a low level, i.e., implementation of the **dataobjects** containing the information and **algorithms** with the methods to calculate and fill them.
- **3.** Currently, algorithms and dataobjects needed for the computation of the **High Energy, Low Energy Gamma** and **Unbiased** triggers have been developed
- 4. The roadmap includes:
- the steps needed before merging the current development into master (revision, documentation, wiki, tests...) so that the end-users can incorporate this feature to their analyses
- the addition of other subtriggers, e.g. low electron topological trigger, that requires information from the CaloPD.

Summary

- A progress report on the simulation work to evaluate and optimize the HERD trigger has been presented
- □ The studies are performed in close collaboration with the other institutes involved in this task, in particular with IHEP, and coordinated within the **HERD Trigger Working Group**
- Our current understanding is that the baseline optimized design should able to cope with the initial requirements in terms of particle efficiency and rates, but more detailed evaluations are ongoing
- □ New possibilities have been investigated (low energy extensions, topological triggers) and should be taken into consideration for the **final design**
- The **implementation** in **HerdSoftware** is now in an advanced stage
- Our plan is to keep up-to-date evaluation of the trigger performance with the latest modifications of the detector simulation and to provide support to new developments, e.g., low energy gamma trigger extension