#### **Trigger Simulation at IHEP**

Xin Liu Zhicheng Tang Ming Xu (*mingxu@ihep.ac.cn*)

Institute of High Energy Physics(IHEP), CAS

2021.02.22

#### outline

- trigger acceptance comparison study
  - inconsistency results found since Xi'an workshop
    - between CIEMAT and IHEP
  - needs cross check by baseline geometry, baseline trigger definition
- CSS geometry related
  - blocked geometrical acceptance
  - update of trigger rate by considering
    - events below horizontal plane
    - secondary particles due to passive material around the payload

# HERD baseline trigger definition (in GeV)

- high Energy (HE)
  - energy\_in\_core > 10

#### Iow Energy Electron (LEE)

- (energy\_in\_RAM\_shell > 0.35 AND energy\_in\_core < 0.06) OR (energy\_in\_RAM\_shell > 1 AND energy\_in\_core < 0.6)</p>
- Low Energy Gamma (LEG)
- energy\_in\_TOP\_shell > 0.35 AND energy\_in\_ANY\_PSD\_side < 0.001</p>
- unbiased (UNB)
  - energy\_in\_ANY\_shell > 0.35 with pre-scale
- global (GLOBAL) :
  - HE3 || LEG || LEE || UNB/1000
- standalone calibration (CALIB)
  - 0.1 < SUM\_of\_energy\_in\_all\_shells < 0.8 AND energy\_in\_core > 0.5

## trigger rate comparison

- separate trigger acceptance from particle fluxes
  - compare trigger acceptance firstly
- common particle fluxes SES package as input to evaluate further trigger rate

#### trigger acceptance comparison for protons



5

#### trigger acceptance comparison for electrons



and the inconsistency was found due to payload geometry



## CSS geometry in MC



## key parameters of CSS

- general
  - dimension: 45.5 m \* 37 m \* 4.5 m (length\*width\*height)
  - weight: 62 tons totally (launched weight)
    - basically 20 tons for each module
  - cabin material: Aluminum, Kevlar

#### solar panels

- 4 of them mounted at the rear side of M.1 and M. 2 (11.5 m\*3 m)
- 2 of them mounted at the middle part of M. core (3 m \* 5.8 m)
- material: mainly composed of Kapton
- trajectory
  - panels on the same cabin share common revolution velocity
  - no revolution for those on M. core.
  - ▶ 6 spin parameters and 2 revolution parameters, independently

### particle source and trigger definition

- source:
  - 45 m surface sphere, 4\*pi, focusing to 3m sphere to enhance simulation efficiency
  - geantino, geometric acceptance study
  - protons, electrons, 500 MeV -5 TeV, power law
- CSS geometry
- HERD baseline geometry
- trigger definition optimized:
  - HE optimized, Etot > 15 GeV
    - easier to evaluate trigger efficiency at higher energies

#### geometrical blocking study

- particles pass CSS volume firstly will be tagged as invalid events
  - primary or secondary confusion
  - charge confusion due to fragmentation
  - should be removed from reconstruction procedure
- geometric acceptance study with geantino, and blocked acceptance defined as
  - valid CALO hit and valid CSS hit
  - events will be tagged as CSS body hit, if the body and panels are both passed through
  - if more than one CSS body volume passed through, the closest one to HERD as the blocking volume

#### blocking of upper half sphere down-going events

- CALO geometric factor ~ 4.37 m2sr
   no blocking from CSS body components
   no blocking, if all solar panels are in horizontal max. blocking of CSS solar panels ~ 0.4 m2sr
   max. blocking of CSS solar panels ~ 0.4 m2sr
  - panels on M. I ~ 0.24 m2sr
  - panels on M. II ~ 0.12 m2
  - panels on M. Core ~ 0.04 r

## blocking of up-going events

- up going events in full sphere surface, CALO GF ~
   4.38 m2sr ( without earth blocking )
- only considering CSS body blocking
  - solar panels in horizontal

|                                                  | down-going (m2sr) | up-going (m2sr) |
|--------------------------------------------------|-------------------|-----------------|
| CALO G. F.                                       | 4.37              | 4.38            |
| equ. box (electronic box+ docking mech.) blocked | 0                 | 3.03            |
| M.I blocked                                      | 0                 | 0.30            |
| sum of other body blocked                        | 0                 | 0.15            |
| remain unblocked                                 | 4.37              | 0.90            |

## remain unblocked



#### update study of the trigger acceptance and rates

- adopt CSS geometry and different cabin material and equipment box geometry for robust consideration
  - same total weight constrains (~ 62 tons)
    - cabin composed of AI, C, KEVLAR(KVL), respectively
  - same equipment box weight constrains (0.3 tons)
    - Iow density solid(0.04 g/cm3, AI)
    - or shell structure(2.7 g/cm3, Al)
  - solar panels in horizontal

|                               | Aluminum(2.7 g/cm3)<br>ave. cabin wall(mm) | Carbon (2 g/cm3)<br>ave. cabin wall(mm) | KEVLAR( 1.4 g/cm3)<br>ave. cabin wall(mm) |
|-------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------|
| Core + Node Mod.<br>(21 tons) | 53                                         | 73                                      | 102                                       |
| Mod. I (20 tons)              | 38                                         | 53                                      | 74                                        |
| Mod. II (20 tons)             | 40                                         | 54                                      | 76                                        |

- trigger acceptance and rates, additional contribution other than down-going events
  - by those secondary particles from the passive material around HERD
  - by directly the upward events

#### directional definition in 2\*2 bins

- backward, cos(phi)=[-1,0]
  forward, cos(phi)=[0,1]
  - downward, cos
- upward, cos(t)

OMUMO

forward

events with cos(theta) > 0.2 were excluded by considering the earth block (theta < 78 deg.), which means the upward acceptance in cos(theta)=[0,1] is actually in cos(theta)=[0,0.2]

backward

HOMAI

## directional trigger acceptance in HE



- *upward* less than *downward* due to earth block
- none contributions from secondaries except (forward, upward), since a high energy response is required
- *(backward, upward)* contributions by primaries free of blocking ~ 0.2 m2sr
- for the worst case in *(forward, upward),* at higher energies with higher probability of secondary produced in cabins beyond HE threshold

17

## directional trigger acceptance in LEE



- forward more than backward due to non-uniformity of trigger region in phi
- none contributions from secondaries, except (forward, upward),
- (backward, upward) contributions by primaries free of blocking ~ 10% of the (backward, downward) acceptance
- for the worst case in *(forward, upward)*, at higher energies with higher probability of secondary produced in cabins beyond LEE threshold

## directional trigger acceptance in UNB



- a very low energy threshold of either shells
- contribution of secondaries is clear (>10GeV) in three directional bins except (backward, downward)
- (forward, downward), secondaries are "shower backsplahsed ones" due to CSS cabins at higher energies (>100GeV)
- *upward* comparison in *backward* and *forward* direction, the increased ratio is fraction of passive material related

#### directional trigger acceptance in CALIB



#### sum of all directions for trigger acceptance



• HE, additional acceptance contribution from secondaris for energies > 300 GeV

- LEE,UNB and CALIB, contribution from secondaris for energies > 20 GeV
- and in the same weight constrain, the station composed of Kevlar cabin will
- contribution more than the Aluminum case

# trigger rate comparison

trigger rate of each channel based on particle fluxes from SES v4, by considering the directional cutoff and directional acceptance

| particles | directional space staion c     | space staion config  |                | average trigger rate(Hz) |      |       |
|-----------|--------------------------------|----------------------|----------------|--------------------------|------|-------|
|           |                                | space staton coning. | HE(Etot>15GeV) | LEE(RAM shell)           | UNB  | CALIB |
| proton    | down-going<br>(cos(theta)<0)   | w/o ss               | 50             | 24                       | 1018 | 228   |
|           |                                | ss Al                | 49             | 24                       | 1034 | 231   |
|           |                                | ss KVL               | 51             | 22                       | 1046 | 232   |
|           |                                |                      |                |                          |      |       |
|           | extension to cos(theta<0.2)    | w/o ss               | 60             | 27                       | 1213 | 274   |
|           |                                | ss Al                | 59             | 28                       | 1255 | 276   |
|           |                                | ss KVL               | 61             | 26                       | 1272 | 280   |
|           |                                |                      |                |                          |      |       |
|           | down-going<br>(cos(theta)<0)   | w/o ss               | 1              | 5                        | 124  | 7     |
|           |                                | ss Al                | 1              | 5                        | 124  | 8     |
|           |                                | ss KVL               | 1              | 5                        | 124  | 8     |
| electron  |                                |                      |                |                          |      |       |
|           | extension to<br>cos(theta<0.2) | w/o ss               | 2              | 6                        | 144  | 10    |
|           |                                | ss Al                | 2              | 6                        | 144  | 10    |
|           |                                | ss KVL               | 2              | 6                        | 145  | 10    |

- compared between down-going and extension case
  - 15% ~ 20% increase of trigger rate by primary particles below horizontal plane
- compared between with or w/o CSS case

22

- by considering particle flux decrease by power law
- Imited increase of trigger rate in all channels by those secondary particles

#### summary

- good agreement of trigger acceptance between CIEMAT and IHEP by using the baseline geometry
- latest CSS geometry was successfully adopted in trigger simulation
  - max. blocking of CSS solar panels ~ 0.4 m2sr
  - ~ 0.55 m2sr additional G.F. contribution by upward backward events. compared with down-going events acceptance, 10% increasing for high energy particles
  - ▶ 15%~20% increasing of trigger rate
    - mostly by upward events
    - contribution from secondaries due to passive material around the payload is negligible