Electroweak studies within Snowmass 2021

A. Freitas University of Pittsburgh

Snow Mass 2021

snowmass21.org/energy/ewk

- 0. Snowmass 2021 structure
- 1. Electroweak precision tests
- 2. High-energy multi-boson production and VBS
- 3. Global SMEFT fits

Slide material from Aram Apyan, Pietro Govoni, Young-Kee Kim, Zhijun Liang, Alessandro Tricoli, Daniel Wiegand

U.S. Strategic Planning Process for Particle Physics

Particle Physics is global:

Snowmass process involves the international community and strategies/plans from other regions

Particle Physics is not isolated:

Snowmass process involves communities and their strategies/plans from related fields (Accelerator, Nuclear, Astro, Gravitational, AMO, ...)

Snowmass CPM: 2020-10-05

Young-Kee Kim (U.Chicago), DPF Chair, for the Snowmass Organization Team

1/20

Snowmass 2021 structure

Frontiers:

Snowmass 2021 structure

The Energy Frontier Group

- EF Convenors: Laura Reina (FSU), Meenakshi Narain (Brown U.), Alessandro Tricoli (BNL)
- Ten Topical Groups study and compare the physics reach of future colliders.

Topical Group	Co-Conveners			
EF01: EW Physics: Higgs Boson properties and couplings	Sally Dawson (BNL)	Andrey Korytov (U Florida)	Caterina Vernieri (SLAC)	
EF02: EW Physics: Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook)	Isobel Ojalvo (Princeton)		
EF03: EW Physics: Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU)	Doreen Wackeroth (Buffalo)		
EF04: EW Physics: EW Precision Physics and constraining new physics	Alberto Belloni (Maryland)	Ayres Freitas (Pittsburgh)	Junping Tian (Tokyo)	
EF05: QCD and strong interactions: Precision QCD	Michael Begel (BNL)	Stefan Hoeche (FNAL)	Michael Schmitt (Northwestern)	
EF06: QCD and strong interactions: Hadronic structure and forward QCD	Huey-Wen Lin (MSU)	Pavel Nadolsky (SMU)	Christophe Royon (Kansas)	
EF07: QCD and strong interactions: Heavy lons	Yen-Jie Lee (MIT)	Swagato Mukherjee (BNL)		
EF08: BSM: Model specific explorations	Jim Hirschauer (FNAL)	Elliot Lipeles (UPenn)	Nausheen Shah (Wayne State)	
EF09: BSM: More general explorations	Tulika Bose (U Wisconsin-Madison)	Zhen Liu (Maryland)	Simone Griso (LBL)	
EF10: BSM: Dark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago)		

EF Introduction, CPM, Oct 5-8, 2020

Alessandro Tricoli

21

The Energy Frontier Group

- EF Convenors: Laura Reina (FSU), Meenakshi Narain (Brown U.), Alessandro Tricoli (BNL)
- Ten Topical Groups study and compare the physics reach of future colliders.

Topical Group	Co-Conveners			
EF01: EW Physics: Higgs Boson properties and couplings	Sally DawsonAndrey Korytov(BNL)(U Florida)		Caterina Vernieri (SLAC)	
EF02: EW Physics: Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook)	Isobel Ojalvo (Princeton)		
EF03: EW Physics: Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU)	Doreen Wackeroth (Buffalo)		
EF04: EW Physics: EW Precision Physics and constraining new physics	Alberto Belloni (Maryland)	Ayres Freitas (Pittsburgh)	Junping Tian (Tokyo)	
EF05: QCD and strong interactions: Precision QCD	Michael Begel (BNL)	Stefan Hoeche (FNAL)	Michael Schmitt (Northwestern)	
EF06: QCD and strong interactions: Hadronic structure and forward QCD	Huey-Wen Lin (MSU)	Pavel Nadolsky (SMU)	Christophe Royon (Kansas)	
EF07: QCD and strong interactions: Heavy lons	Yen-Jie Lee (MIT)	Swagato Mukherjee (BNL)		
EF08: BSM: Model specific explorations	Jim Hirschauer (FNAL)	Elliot Lipeles (UPenn)	Nausheen Shah (Wayne State)	
EF09: BSM: More general explorations	Tulika Bose (U Wisconsin-Madison)	Zhen Liu (Maryland)	Simone Griso (LBL)	
EF10: BSM: Dark Matter at colliders	Caterina Doglioni (Lund)	LianTao Wang (Chicago)		

EF Introduction, CPM, Oct 5-8, 2020

Alessandro Tricoli

Timeline

Electroweak precision tests

Open questions of the Standard Model:

- Is the Higgs boson part of a more complex sector?
- Is there an extended/unified symmetry group?
- What is dark matter?
- Why is there more matter than anti-matter in the universe?

\rightarrow Physics beyond the Standard Model

- \rightarrow Direct searches at high-energy colliders (LHC)
- → Astro-physics searches (e.g. DM direct / indirect detection)
- \rightarrow Indirect evidence from precision measurements

Electroweak precision tests at future colliders

circular colliders: high-lumi run at $\sqrt{s} \sim M_Z$ linear colliders: radiative return $e^+e^- \rightarrow \gamma Z$

\sqrt{s}	M_Z	$2M_W$	240–250 GeV	350–380 GeV
ILC	100 fb $^{-1}$	500 fb $^{-1}$	2 ab $^{-1}$	200 fb $^{-1}$ (10 pts.)
CLIC	—	—	—	1 ab $^{-1}$
FCC-ee	230 ab $^{-1}$	10 ab $^{-1}$ (2 pts.)	irrel. for EW phys.	200 fb $^{-1}$ (8 pts.)
CEPC	45 ab $^{-1}$	2.6 ab^{-1} (3 pts.)	irrel. for EW phys.	_

Anticipated precison for EWPOs:

Quantity	current	ILC*	CLIC*	FCC-ee [†]	CEPC [†]
M_Z [MeV]	2.1	-	—	0.1	0.5
Γ_Z [MeV]	2.3	—	—	0.1	0.5
M_W [MeV]	12	2.5	?	0.7	1.0
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	14	2	7.8	0.5	2.3
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	23	38	6	4.3

Can be optimized with different run scenarios

- [†] Measurements at $\sqrt{s} \sim M_Z$ and $\sqrt{s} \sim 2M_W$
- * Measurements at $\sqrt{s}\sim 250/380$ GeV, using $ee\to \gamma Z$

• Polarized beams at ILC ($P_{e^-}=0.8$, $P_{e^+}=0.8$) and CLIC ($P_{e^-}=0.8$)

Anticipated precison for EWPOs:

Quantity	current	ILC	CLIC	FCC-ee	CEPC
M_Z [MeV]	2.1			0.1	0.5
Γ_Z [MeV]	2.3	—	—	0.1	0.5
M_W [MeV]	12	2.5	?	0.7	1.0
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	14	2	7.8	0.5	2.3
$R_b = \Gamma_Z^b / \Gamma_Z^{had} [10^{-5}]$	66	23	38	6	4.3

95% CL reach from the full EFT fit (modified SILH')

Future colliders: Open questions

- Evaluate systematic uncertainties with full simulation (b-tagging hemisphere correlations, particle ID, lepton charge, τ lifetime)
- Some measurements appear systematic limited, but historically systematic effects are often overestimated during design stage
- How much can be gained for EWPOs by running ILC at $\sqrt{s} \sim M_Z$ compared to $\sqrt{s} \geq 250$ GeV (using rad. return)?
- For lin. coll.: Can one use $J/\psi \to \mu^+\mu^-$ to calibrate energy? $(\delta M_{J/\psi}/M_{J/\psi} \sim 2 \times 10^{-6} \text{ compared to } \delta M_Z/M_Z \sim 2 \times 10^{-5})$
- Need improved theory calculations (at least 2-loop for $2 \rightarrow 2$ and 3/4-loop for Z production and decay)
- Is SMEFT always an appropriate language to parametrize devations from SM? What do we learn about specific BSM models?
- Can we disentangle degeneracies in the SMEFT parameter space with νp , ep and eN scattering experiments?

Freitas, Heinemeyer, et al. '1					
C-ee C	EPC	current theory*	projected theory [†]		
).1	0.5	0.4	0.15		
).7	1.0	4	1		
).5	2.3	4.5	1.5		
6	4.3	11	5		
	C-ee C 0.1 0.7 0.5 6	C-eeCEPC0.10.50.71.00.52.364.3	Freitas, IC-eeCEPCcurrent theory*0.10.50.40.71.040.52.34.564.311		

* Current state-of-art: full two-loop + leading 3-loop

[†] Future scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$ + leading 4-loop (N_f^n = at least *n* closed fermion loops)

Higher-energy multi-boson production and VBS

Multi-boson production at hadron colliders

anomalous couplings

- many results have been expressed in terms of anomalous couplings
- assume that any new physics is summarised as a multiplicative modification of one coupling in a single vertex in Feynman diagrams
- typically divided into two categories: anomalous Triple Gauge Couplings (aTGC) or anomalous Quartic Gauge Couplings (aQGC)
- historically, aTGCs have been associated to diboson final states, aQGCs to tri-boson final states and vector boson scattering (VBS)

P. Govoni - Future perspectives for EFT studies at LHC - SnowMass21 EF04 meeting, 04.06.20

Higher-energy multi-boson production and VBS

Multi-boson production at hadron colliders

anomalous couplings

- many results have been expressed in terms of anomalous couplings
- assume that any new physics is summarised as a multiplicative modification of one coupling in a single vertex in Feynman diagrams
- typically divided into two categories: anomalous Triple Gauge Couplings (aTGC) or anomalous Quartic Gauge Couplings (aQGC)
- historically, aTGCs have been associated to diboson final states, aQGCs to tri-boson final states and vector boson scattering (VBS)

Future VBS studies

Parameterize aGC in terms of SMEFT operators

- Which SMEFT basis to use? [to combine different channels and experiments]
- EFT contributions in PDF fits? [otherwise may absorb new phys. in proton structure]
- Putting constraints on multi-dim. space of Wilson coefficients is expensive in terms of MC generation [is it ok to simply use event weights?]

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \underbrace{\frac{1}{\Lambda^{2}} \mathcal{L}_{6}}_{\text{state of art}} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \underbrace{\frac{1}{\Lambda^{4}} \mathcal{L}_{8}}_{\text{needed for some aQGC}}$$
(When) should we mix dim-6 and dim-8 operators in the fits? How?
$$\overbrace{\sim \frac{C_{i}^{(6)}}{\Lambda^{2}}}_{i + 1} \underbrace{\sim \frac{C_{i}^{(6)} C_{j}^{(6)}}{\Lambda^{4}}}_{t + 1} \underbrace{\sim \frac{C_{i}^{(6)} C_{j}^{(6)}}{\Lambda^{4}}}}_{t + 1} \underbrace{\sim \frac{C_{i}^{(6)} C_{j}^{(6)}}{\Lambda^{4}}}_{t + 1} \underbrace{\sim \frac{C_{i}^{(6)} C_{j}^{(6)}}{\Lambda^{4}}}}_{t + 1} \underbrace{\sim \frac{C_{i}^{(6)} C_{j}^{(6)}}}{\Lambda^{4}}}$$

how should we cure the unitarity problem?

- In SMEFT, scattering amplitudes generally grow with energy leading to a **breakdown of unitarity at some critical energy**
- EFT validity stops at the energy Λ , which represents the scale of new physics
 - if this effect is neglected in data analyses, resulting limits on Wilson coefficients are typically too stringent
- what technique should be applied to provide results that are not too optimistic, if unitarity questions are neglected?
- how is the unitarity issue treated when combining several analyses?
- how do we balance the accounting of unitarity bounds with the need for an easilyusable result?

M. Szleper

15

EFT validity issues in Vector Boson Scattering data analysis

P. Govoni - Future perspectives for EFT studies at LHC - SnowMass21 EF04 meeting, 04.06.20

Pietro Govoni

EFT validity

Proposal: Use dim6² as proxy for theory error and (unknown) dim8 Alte, König, Shepherd '17,18

1.0

0.5 0.0

2 3

1

δ

Sample pheno study for di-jet prod.: $\chi = \exp(|y_1 - y_2|)$

800 600 600 600 200 0 1.5 01.5

6 7 8 9 10

 χ

5

4

 $L_{\rm int} = 50 \text{ fb}^{-1}, \ 4.2 \text{ TeV} < m_{jj} < 4.8 \text{ TeV}$

14

16

12

12/20

Multi-boson production at lepton colliders

CLIC: e^+e^- with up to 3 TeV μ Col: $\mu^+\mu^-$ with up to 30 TeV

VBF/VBS dominates at $\sqrt{s}\gtrsim$ few TeV

EW PDFs provide good approx. (prob. for "finding" W/Z in e/μ)

Can be computed perturbatively, but resums $log(s/M_V^2)$

Also may need **EW parton shower** for final states

EFT validity

Global SMEFT fits

• Higher-dim. ops. constructed with SM fields $\mathcal{L} = \mathcal{L}_{SM} + \frac{c_{\nu m}}{\Lambda} \mathcal{O}_{\nu m} + \frac{1}{\Lambda^2} \sum_i c_i \mathcal{O}_i^{(6)} + \dots$

Present exp. data with minimal model assumption;
 Framework for comparing experiments

- More operators than observables
 - \rightarrow Need to make assumptions, e.g. U(3) or U(2) flavor universality
- Correlations between sectors (e.g. Higgs and EW)

Higgs self-coupling

HH production vs. loop effects

Spoiled by other loop effects?

Top operators

Top higher-dim. operators in loop diagrams:

$$\mathcal{O}_{tH} = (\Phi^{\dagger}\Phi)(\bar{Q}t\tilde{\Phi}), \qquad \mathcal{O}_{Hq}^{(1)} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{Q}\gamma^{\mu}Q), \\ \mathcal{O}_{Hq}^{(3)} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}\Phi)(\bar{Q}\gamma^{\mu}\tau^{a}Q), \qquad \mathcal{O}_{Ht} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{t}\gamma^{\mu}t), \\ \mathcal{O}_{Htb} = (\tilde{\Phi}^{\dagger}iD_{\mu}\Phi)(\bar{t}\gamma^{\mu}b), \\ \mathcal{O}_{tW} = (\bar{Q}\sigma^{\mu\nu}t)\tau^{a}\tilde{\Phi}W_{\mu\nu}^{a}, \qquad \mathcal{O}_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\tilde{\Phi}B_{\mu\nu},$$

17/20

Global SMEFT fits: Open questions

- Full and consistent treatment of all ops. in VV prod ?
- Include Γ_H as free parameter (from exotic BSM decay channels) ?
- How to include EFT validity constraints; theory errors ?
- Include 4-fermion operators (e.g. from EW $2\rightarrow 2$ processes) ?
- Include CP operators (and CP observables) ?
- SMEFT contributions in backgrounds and PDF fits?
- Impact of low-energy experiments and lepton-hadron colliders ?

Low-energy PV: EFT interpretation

MOLLER: $\Lambda \lesssim 39$ TeV Erler, Horowitz, Mantry, Souder '14

Electron-Ion Collider (EIC)

20/20

Fitting Methodology (68% CL):

For EIC/DIS:

- Integrate over (x, Q^2) bins
- Assume uncorrelated errors
- $\Delta\sigma_{SMFT}$ measures deviation from SM Data deviation from SM

DY+EIC: Best Bounds Yet

For LHC/DY:

- Integrate over m_{ll} bins
- Error Correlation from ATLAS
- - ATLAS Collab. (1606.01736)

Daniel Wiegand

Be involved!

- $M_{\mathsf{Z}}, \ \mathsf{\Gamma}_{\mathsf{Z}}$: From $\sigma(\sqrt{s})$ lineshape
- m_t : Current status $\delta m_t \sim 0.4$ GeV at LHC \rightarrow Additional theory uncertainties?

PDG '18

Butenschoen et al. '16

Ferrario Ravasio, Nason, Oleari '18 tt threshold - QQbar_Threshold NNNLO ISR + ILC Luminosity Spectrum default - m_t^{PS} 171.5 GeV, Γ_t 1.37 GeV m, variations ± 0.1 GeV -- Γ_t variations ± 0.15 GeV theory uncertainty (scale) 0.3 I simulated data points 200 fb⁻¹ total 0.2 efficiencies and signal yields 0.1 from EPJ C73, 2530 (2013) 0 350 340 345 √s [GeV]

Simon '19

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV: $\delta m_{\rm t} \lesssim 50$ MeV

• M_Z , Γ_Z : From $\sigma(\sqrt{s})$ lineshape

• m_t : Current status $\delta m_t \sim 0.4$ GeV at LHC \rightarrow Additional theory uncertainties?

PDG '18

Butenschoen et al. '16 Ferrario Ravasio, Nason, Oleari '18

From
$$e^+e^- \rightarrow t\bar{t}$$
 at $\sqrt{s} \sim 350$ GeV:
 $\delta m_{\rm t} \lesssim 50$ MeV

• m_b, m_c : From quarkonia spectra using Lattice QCD $\delta m_b^{\overline{\text{MS}}} \sim 30 \text{ MeV}, \ \delta m_b^{\overline{\text{MS}}} \sim 25 \text{ MeV}$ LHC HXSWG '16 \rightarrow estimated improvements $\delta m_b^{\overline{\text{MS}}} \sim 13 \text{ MeV}, \ \delta m_b^{\overline{\text{MS}}} \sim 7 \text{ MeV}$

Lepage, Mackenzie, Peskin '14

- α_s:
 - Most precise determination using Lattice QCD:
 - $\alpha_{\mathrm{S}} = 0.1185 \pm 0.0008$ ALPHA '17

 $\alpha_{s} = 0.1172 \pm 0.0011$ Zafeiropoulos et al. '19

- e^+e^- event shapes and DIS: $\alpha_s \sim 0.114$ Alekhin, Blümlein, Moch '12; Abbate et al. '11; Gehrmann et al. '13
 - → Subject to sizeable non-pertubative power corrections
 - → Systematic uncertainties in power corrections?
- Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.120 \pm 0.003$ PDG '18
 - \rightarrow No (negligible) non-perturbative QCD effects
 - FCC: $\delta R_\ell \sim 0.001$

 $\Rightarrow \delta \alpha_{\rm S} < 0.0002$ (subj. to theory error)

Caviat: R_{ℓ} could be affected by new physics

Low-energy parity violation

 Polarized ee, ep, ed scattering (Q_W(e), Q_W(p), eDIS)
 E158 '05; Qweak '17; JLab Hall A '13

- $\nu N/\overline{\nu}N$ scattering NuTeV '02
- Atomic parity violation (Q_W(¹³³Cs)) Wood et al. '97 Guéna, Lintz, Bouchiat '05

 \rightarrow Test of running $\overline{\text{MS}}$ weak mixing angle $\sin^2 \overline{\theta}(\mu)$

 $g_{\mathsf{AV}}^{ef} \left[\bar{e} \gamma^{\mu} \gamma_{5} e \right] \left[\bar{f} \gamma_{\mu} f \right]$ $g_{\mathsf{VA}}^{ef} \left[\bar{e} \gamma^{\mu} e \right] \left[\bar{f} \gamma_{\mu} \gamma_{5} f \right]$

$$g_{\mathsf{AV}}^{ef} = \frac{1}{2} - 2|Q_f|\sin^2\bar{\theta}(\mu)$$
$$g_{\mathsf{VA}}^{ef} = \frac{1}{2} - 2\sin^2\bar{\theta}(\mu)$$

Low-energy parity violation

 Polarized ee, ep, ed scattering (Q_W(e), Q_W(p), eDIS)
 E158 '05; Qweak '17; JLab Hall A '13

- $\nu N/\bar{\nu}N$ scattering NuTeV '02
- Atomic parity violation (Q_W(¹³³Cs)) Wood et al. '97 Guéna, Lintz, Bouchiat '05
- Future experiments:

MOLLER (ee), P2, SoLID (ep)

 $g_{\text{AV}}^{ef} \left[\bar{e} \gamma^{\mu} \gamma_{5} e \right] \left[\bar{f} \gamma_{\mu} f \right]$ $g_{\text{VA}}^{ef} \left[\bar{e} \gamma^{\mu} e \right] \left[\bar{f} \gamma_{\mu} \gamma_{5} f \right]$ $a_{\text{AV}}^{ef} = \frac{1}{2} - 2 |Q_{e}| \sin^{2} \bar{\theta} ($

$$g_{\text{AV}}^{e_f} = \frac{1}{2} - 2|Q_f|\sin^2\theta(\mu)$$
$$g_{\text{VA}}^{e_f} = \frac{1}{2} - 2\sin^2\overline{\theta}(\mu)$$