

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

High-granularity Crystal Calorimeter: R&D status

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

Joint Workshop of the CEPC Physics, Software and New Detector Concept April 14-17, 2021

Motivations

- Background: future lepton colliders (e.g. CEPC, ILC, etc.)
 - Precision measurements with Higgs and Z/W
- Why crystal calorimeter?
 - Homogeneous structure
 - Optimal intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Corrections to the Bremsstrahlung of electrons
 - Capability to trigger single photons
 - Flavour physics at Z-pole: precision γ/π^0 reconstruction
 - Potentials in search of BSM physics
- Finely segmented crystals
 - PFA capability for precision measurements of jets
 - Jet energy resolution aims for 3~4%

High-granularity Crystal Calorimeter: past events

- Firstly proposed in <u>CEPC calorimetry workshop (March 2019)</u>
- Follow-up workshop: Mini-workshop on a detector concept with a crystal ECAL
- R&D efforts targeting key issues and technical challenges

Virtual mini-workshop on a detector concept with a crystal ECAL, July 22-23, 2020, <u>https://indico.ihep.ac.cn/event/11938/</u>

R&D efforts targeting key issues and technical challenges (reminder)

- Key issues: performance studies and optimization
 - Detector layout: crystal segmentation in longitudinal and lateral dimensions
 - Performance: single particles and jets with PFA
 - Fast timing
 - Impacts from dead materials: upstream tracker, services (cabling, cooling)
 - Potentials: dual-gated or dual-readout for better hadronic energy resolution
- Critical technical questions/challenges
 - Detector unit design: crystal options (BGO, PWO, etc.), SiPMs (HPK, NDL, etc.)
 - Front-end electronics: cornerstone for instrumentation of high-granularity calorimetry
 - Multi-channel ASIC: high signal-noise ratio, wide dynamic range, continuous working mode, minimal dead time, etc.
 - Light-weight cooling and supporting mechanics
 - Calibration schemes and monitoring systems: SiPMs, crystals and ASICs
 - System integration: scalable detector design (modules), mass assembly, QA/QC

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- Fine segmentation
 - Both longitudinal and transverse
 - Single-ended readout with SiPM
- A natural design compatible with PFA

Design 2: long bars

- Long bars: 1×40cm, double-sided readout
 - Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels
- Timing at two sides: positioning along bar

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- PFA performance studies
 - With crystal cubes (ideal granularity) for physics benchmarks
 - Inputs for optimization of PFA for crystals

Design 2: long bars (current focus)

Advantages

- Longitudinal granularity
- Save #channels and minimize dead materials (between crystals)
- Key issues: impact on PFA performance
 - Reconstruction algorithm development
 - Ambiguity of multiple incident particles and separation capability

Recent progress on crystal calorimeter

- Key issues: performance studies and optimization
 - PFA performance with jets with PFA
 - Software development in the new framework CEPCSW
 - Layout of long crystal bars
 - Simulation and digitisation tools
 - Reconstruction: clustering and splitting
 - Performance validation
- Critical technical questions/challenges
 - Detector unit (crystal + SiPM): simulation and tests
 - Front-end electronics: multi-channel ASIC testing

Talk on "Reconstruction Algorithm for Crystal ECAL" by S. Sun (same session)

Recent progress on crystal calorimeter

- Key issues: performance studies and optimization
 - Performance with ArborPFA: preliminary studies with crystal cubes
 - Studies with physics benchmarks
 - $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$
 - $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
 - Performance studies: reconstruction of neutral pions
 - Separation capability of crystals with Arbor
- Critical technical questions/challenges
 - Detector unit (crystal + SiPM): simulation and tests
 - Front-end electronics: multi-channel ASIC testing

PFA performance studies with crystal calorimeter

- Strategy/ideas
 - First start with an ideal finely segmented crystal calorimeter
 - BMR quantitative studies with physics benchmarks: e.g. 2 jets $(H \rightarrow gg)$ and 2 photons $(H \rightarrow \gamma\gamma)$
 - Change the crystal granularity \rightarrow impacts \rightarrow requirements on segmentation (e.g. BMR<4%)

 \rightarrow to compare with performance of the design of long crystal bars

- Detector geometry CEPC_v4 (CDR), and replace SiW ECAL with crystal ECAL
 - Crystal ECAL geometry: first start with cubes (1 cm³)
- Ongoing studies and plans
 - BMR with "default" ArborPFA parameters (tuned for SiW)
 - ArborPFA optimisation for crystals: e.g. clustering, separation power
 - Significantly wider shower profiles than in SiW, and more "isolated" hits
 - Calibration of crystal calorimeter to hadronic showers

PFA performance: first studies with crystals

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- Plenty of room to improve PFA performance with crystals
 - Essential: reconstruction algorithm, PFA parameters tuning for crystals

Note the Arbor PFA parameters not yet optimised for crystals: more overlaps in crystals expected (larger X₀, R_M than tungsten)

Dan Yu, YL (IHEP)

PFA performance: first studies with crystals

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- Plenty of room to improve PFA performance with crystals
 - Essential: reconstruction algorithm, PFA optimsation for crystals
- A few points for further discussions (from my side): welcome more
 - Current PFA focuses on pattern recognition
 - Less stringent requirement on energy resolution
 - Crystal calorimeter: pros and cons
 - Precision energy information
 - But not yet used in PFA: new ideas highly desired
 - Challenges of good separation of multiple particles in jets ¹/₂₀₀
 - Intrinsically, shower profiles less compact and more isolated hits in crystals, compared with the SiW option
 - Overlapping of showers of close-by particles
 - How much room for improvement with fine energy info?

- Full simulation studies with $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$ at 240 GeV
 - Invariant of mass of $H \rightarrow \gamma \gamma$: a factor of 2~3 better resolution with crystals
 - Other structures in the InvMass spectrum: investigation efforts ongoing

Zhiyu Zhao (IHEP/SJTU)

- Full simulation studies with $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$ at 240 GeV
 - Structures in the spectrum: investigating efforts ongoing

- MC simulation
 - $\sqrt{s} = 240 GeV$, $\mathcal{L} = 5.6 ab^{-1}$, Wizard 1.95+MoccaC
 - Signal: $e^+e^- \rightarrow ZH \rightarrow \nu\nu\gamma\gamma/\mu\mu\gamma\gamma$.
 - Background: 2 fermion diphoton continuum background.
- Fast detector simulation
 - Smear the MC truth photon energy with stochastic term B
 - 3% for the stochastic term in crystal calorimeter
 - 16% for the stochastic term in SiW calorimeter

Constant term is fixed to 1% for both cases.

• Cut-based analysis in the combination of $\nu\nu\gamma\gamma$ and $\mu\mu\gamma\gamma$ channel, fit $m_{\gamma\gamma}$ shape to get $\delta(\sigma(ZH) \times Br(H \to \gamma\gamma))$

EM Resolution	$\delta(\sigma imes Br)$	
$3\%/\sqrt{E} \oplus 1\%$	8.0%	
$16\%/\sqrt{E} \oplus 1\%$	11%	

Details in the talk by Danyi Zhang at the Young Scientist Forum (Friday)

Fangyi Guo (IHEP), Danyi Zhang (UCAS)

• $B^0/B_s^0 \to \pi^0\pi^0$ at CEPC: fast simulation studies

Reconstruction of π^0

• Physics requirements

Details in the talk by Yuexin Wang in the Flavor Physics Session (April 15)

Measurements of $B^0/B_s^0 \rightarrow \pi^0\pi^0$ with achievable ECAL resolution and baseline b-tagging

Yuexin Wang (IHEP)

Performance studies with neutral pions

Zhiyu Zhao (IHEP/SJTU), Fangyi Guo (IHEP)

- Invariant mass of π^0 : crystal ECAL vs. SiW ECAL
 - Single π^0 's generated by the particle gun
- First full simulation studies: a factor of 2 (slightly less) in mass resolution

Performance studies with neutral pions

Zhiyu Zhao (DLUT), Fangyi Guo (IHEP)

- Invariant mass of π^0 : crystal ECAL vs. SiW ECAL
- First full simulation studies: a factor of 2 (slightly less) in mass resolution (7 GeV π^0)
 - Expected resolution ~3% for 7 GeV π^0 (energy and angular resolutions)
 - Some discrepancy exists, to be investigated

Performance studies with neutral pions

• Angular resolution of π^0 reconstruction: crystal ECAL vs. SiW ECAL

Similar performance with two ECAL options in general; crystal option slightly better

Photon separation studies with Arbor

- Clustering efficiency with a single photon
 - Energy ratio of the leading cluster and all clusters: 98~99%
- First separation studies with two photons
 - Perpendicular incidence to ECAL
 - In parallel, separated by a certain distance (not from the IP)

Hideki Okawa, Yu Zhang (Fudan U.)

Photon separation studies with Arbor

Hideki Okawa, Yu Zhang (Fudan U.)

- Separation studies with two photons
 - "Overlay" of two single-photon events
- 3 major parameter sets for tuning
 - Build connections (in Arbor)
 - Bush-Connect (in Arbor)
 - Energy region for reconstructed photons (efficiency definition)
- Preliminary (fresh) results
 - Training to go through the whole chain
 - Only a start, not final numbers!
 - Need further understanding and investigation or debugging

Recent progress on crystal calorimeter

- Key issues: performance studies and optimization
 - PFA performance with jets with ArborPFA: preliminary studies with crystal cubes
 - Studies with benchmarks $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ and $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$
 - Performance studies: reconstruction of neutral pions
 - Separation capability of crystals with ArborPFA
- Critical technical questions/challenges
 - Detector unit (crystal + SiPM) design
 - Front-end electronics: multi-channel ASIC testing

Detector unit: general considerations

- Key parameters
 - MIP response (#p.e./MIP)
 - Photon statistics: significant impact to the stochastic term ($\leq 3\%$)
 - Energy threshold: sensitivity to low-energy photons
 - Dynamic range
 - Orders of magnitude: o(1MeV ~ 30 GeV) per crystal cell
 - Dependent on crystal dimensions
 - Impact from non-linearity effects of photosensors and electronics
 - SiPM: e.g. limited amount of pixels on a given sensitive area
 - Electronics: e.g. Time-over-Threshold technique
 - Fast timing
 - To explore potentials of <100ps and understand possible limitations

Crystal bar: length impacts and uniformity scan

 G4 full simulation of MIP response Geant4 10.5.0 BGO and PWO crystals (varying lengths): photons detected at each SiPM Also scanned different hit positions: response uniformity Measurements (cosmics) ongoing to validate the simulation ESR wrapping $400 \times 10 \times 10$ mm³ BGO Crystal SiPM1 muon SiPM2 ork in Progress #Detected Photons (mean) avgPhoton zp avgPhoton zp 1600 MIP Response uniformity avgPhoton zm avgPhoton zm 22 (mean) 1500 Work in Progress avgPhoton zp PWO: varying lengths 1400 **BGO: varying lengths** avgPhoton zn 1200 Photons ((muon hitting the center) (muon hitting the center) 1300 1000 1200 800 #Detected 400 BGO: 400 mm long 1000 200 900 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 -200 -150 -100 -50 Crystal Length / mm Muon Hit Position / mm Crystal Length / mm **UNIFIED** model

#Detected Photons (mean)

Baohua Qi (IHEP)

Crystal detector unit: simulation studies

- EM energy resolution
 - MIP response ("light yield" in plots) and energy threshold
 - Using digitisation tools: photon statistics (crystal+SiPM), electronics resolution

Energy Resolution 100p.e./MIP

Geant4 10.5.0

Baohua Qi (IHEP)

Light Yield vs Stochastic Term

Crystal bar: timing studies

- Timing performance to MIPs in G4 full simulation: ongoing
 - BGO and PWO crystals (varying lengths): better time resolution with shorter crystal length
 - Time stamp of the first photon detected at each SiPM
 - Use Cherenkov light in the slow scintillator such as BGO?
 - Will look at other crystals and new materials for fast timing

Baohua Qi (IHEP) SiPM2 SiPM1 50×10×10 mm³ Crystal ESR wrapping muon StdDev of EndTime zp StdDev of EndTime_zm

200

200

250

300

350

400 Length /mn

250

300

Length /n

z+ End

• z- End

1.4

Front-end electronics for SiPM readout

- Designed by KIP, U. Heidelberg
 - Originally for CALICE AHCAL (scintillator-SiPM)
- Promising candidate: 36-channel, low-power
 - Excellent S/N ratio: stringently required by high-dynamic SiPMs (small pixels)
 - Continuous working mode: crucial for circular colliders (no power pulsing)
- Need to quantitatively verify its performance and power consumption

Joint efforts with the JUNO-TAO team

Klaus5 tests with NDL-SiPM (reminder)

- NDL-SiPM features: small pixel pitch (10µm or smaller), high PDE
 - Requires high S/N ratio in electronics to resolve single photons (small gain)
- Klaus5 proved to be able to resolve the single photons (32fC/p.e.)
 - Benefits from its high S/N ratio and high resolution

Klaus5 tests with charge injection

- Testing of all 36 channels
 - Good linearity in different working modes (high gain and low gain)
 - Small equivalent noise charge (ENC) ~4.5fC
 - Dynamic range: ~550pC as the maximum charge (preliminary)

(after pedestal subtraction)

ADC in Ultra Low Gain mode (after pedestal subtraction)

Dynamic Range

Klaus5 dead time measurements (reminder) Potential for continuous mode

- Varying time interval between 2 injection pulses: 100ns 10µs
- When time interval > 500ns, 100% efficiency of separating the two pulses
 - Promising feature for 100% duty cycle (required by circular colliders)

KLauS: power consumption

- Power consumption measurements with varying temperatures
 - KLauS chips (version 5, 6) and peripherals
 - KLauS6: ~0.4W/chip measured around room temperature
 - At threshold=0 (high trigger rate expected ~2MHz)

Typical 3.3mW/ch for Klaus5

With JUNO-TAO team

KLauS6: timing performance

- KLauS6: tested with a pulse generator
 - KLauS6 TDC bin 200 ps: theoretical resolution ~58 ps
 - Time intervals between 2 pulses
 - Timing resolution measured ~160ps
 - Still quite some room for improvement

Electronics: ongoing R&D

Bo Lu (IHEP), et al.

• PIST ASIC prototype for SiPM readout: fast timing and TOT

Summary

- High-granularity crystal caorimeter
 - Aim to achieve optimal EM energy resolution and PFA capability
 - Steady R&D progress targeting key issues
 - PFA performance: preliminary studies with crystals
 - Software developments in CEPCSW (a separate talk by Dr. S. Sun)
 - Performance studies with two photons
 - Technical progress
 - SiPM and crystal: design and timing potentials
 - SiPM-readout ASIC: characterisations and new developments
- Welcome broader collaborations
- Synergies expected: common software framework (Gaudi, Key4HEP, DD4HEP, ...)

Backup slides

PFA performance: a first glance with crystals

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- Simulation setup: a temporary layout for first studies
 - Crystal calorimeter with silicon layers
 - Use positioning info from silicon pads, energy from crystal bars
 - Reconstruction algorithm for crystals not ready yet
 - RPC-based semi-digital hadron calorimeter (SDHCAL)
 - Other subdetectors: CEPC CDR baseline

1 super-layer:
2 crystal layers (energy)
1 thin silicon layers (position)

Dan Yu (IHEP)

PFA performance with CDR baseline detector

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
 - Energy flow: combination of hits in calorimeters only
 - Boson mass resolution (BMR)

CEPC CDR baseline detector:

BMR improved to 3.9% with PFA

• PFA improves the resolution from 5.2% to 3.9%

ECAL: 28 SiW layers (24X0)

SiW ECAL with a factor of two lower sampling frequency: to compare with crystals (next page)

ECAL: 14 SiW layers (24X0)

Dan Yu (IHEP)

3156

125.3

5.725

200

70.04 / 30

 342.9 ± 8.2

 125.3 ± 0.1

 5.38 ± 0.08

Entries

Mean

RMS

 χ^2 / ndf

Constar

Mean

Sigma

150

PFA performance: a first glance with crystals

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- 14 layers of crystal and silicon: use silicon for positioning
 - Without crystal information: PFA improves resolution to 5.0% from 5.8%
 - With crystal energy information only: energy resolution ~4.8%
- Plenty of room to improve PFA performance with crystals
 - Essential: reconstruction algorithm, PFA optimisation for crystals

Note the Arbor PFA parameters not yet optimised for crystals: more overlaps in crystals expected (larger X₀, R_M than tungsten)

Dan Yu (IHEP)

Super Cell

40cm

Neutral pion reconstruction: crosscheck with MC truth

PFA performance with CDR baseline detector

- 2-jet benchmark events in $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
 - Energy flow: combination of hits in calorimeters only
 - Boson mass resolution (BMR)

CEPC CDR baseline detector:

BMR improved to 3.9% with PFA

• PFA improves the resolution from 5.2% to 3.9%

ECAL: 28 SiW layers (24X0)

SiW ECAL with a factor of two lower sampling frequency: to compare with crystals (next page)

ECAL: 14 SiW layers (24X0)

Dan Yu (IHEP)

3156

125.3

5.725

200

70.04 / 30

 342.9 ± 8.2

 125.3 ± 0.1

 5.38 ± 0.08

150

Impacts to Higgs mass resolution: reminder

Yuexin Wang (IHEP)

- Full simulation with SiW-ECAL via the benchmark Higgs to 2 gluons
 - 10 longitudinal layers or more in ECAL can help achieve better than 4% of BMR
 - Expect small impact from ECAL intrinsic energy resolution (PFA fast simulation)
- Guidance for the longitudinal segmentation
 - Will perform more benchmark studies for crystal ECAL in the CEPC detector simulation

Crystal and SiW options

 $\mathsf{Crystal}\ \mathsf{ECAL}{:}\ BGO$

- Optimal energy resolution $\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%$
 - Better jet energy resolution 0.17 $\sqrt{E_J}$
- Larger $R_M \rightarrow$ larger lateral width of a shower
 - Increase probability of showers' overlap
- Larger $\lambda_I / X_0 \rightarrow$ longitudinal development is determined by λ_I
 - Increase probability of hadronic shower in ECAL

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had}^2 + \sigma_{em}^2 + \sigma_{Confusion}^2}$$

Confusion is the limiting factor in PFA.

- Avoid double counting of same particle
- Separate energy from different particles

Material	X_0 /cm	R _M /cm	λ_I /cm	λ_I/X_0
W	0.35	0.93	9.6	27.4
BGO	1.12	2.23	22.8	20.3
Ratio	3.2	2.4	2.4	0.74

Component	Detector	Energy Fraction	Energy Resolution	Jet Energy Resolution
Charged Particles (X^{\pm})	Tracker	~0.6 <i>E</i> _J		—
Photons (γ)	ECAL	~0.3 <i>E</i> _J	$0.15\sqrt{E_{\gamma}}$	$0.08\sqrt{E_J}$
			$0.03\sqrt{E_{\gamma}}$	$0.016 \sqrt{E_J}$
Neutral Hadrons (h^0)	HCAL	~0.1 <i>E</i> _J	$0.55 \sqrt{E_{h^0}}$	$0.17 \sqrt{E_J}$

Considerations on detector layouts

Layout 1: same module for each layer

- Pros
 - Modular design
 - Uniform structure (easy calibration)
- Cons
 - Material budgets (cooling, mechanics)

Layout 2: every two layers share the same cooling service and mechanics

- Save material budget (e.g. a factor of two)
- Cons
 - Non-uniform sampling structure: will need specific considerations for calibration

Studies on physics requirements

- Estimate the multiplicity level of jets: fast simulation
 - Detailed studies with 2 incident particles (from a jet) hitting the hottest tower

Yuexin Wang (IHEP)

Reconstruction: ongoing studies

Yuexin Wang (IHEP)

Patterns in event display: 2 photons

Shower profiles: 2 photons

Pattern studies using Event Display

- Patterns for first impression, but still complex
- Need further studies on positioning and energy splitting

