

Progress of the CEPC AHCAL

Yukun Shi

On behalf of the CEPC Calorimeter Group Joint Workshop of the CEPC 2021.4

- Background
- AHCAL optimization
- Scintillator and SiPM
- HCAL Board Unit
- Summary and outlook

Background

• CEPC

- The CEPC is designed as the Higgs factory
- The baseline detector option for the CEPC is guided by the particle flow algorithm(PFA)

Background

- The Scintillator-Steel AHCAL
 - PFA oriented: high granularity
 - 40mm cell size
 - 40 sampling layers
 - 20mm steel
 - 3mm scintillator
 - 2mm PCB
 - Analog readout: SiPM+SPIROC

CEPC baseline calorimeter options

- Background
- AHCAL optimization
- Scintillator and SiPM
- HCAL Board Unit
- Summary and outlook

AHCAL optimization

- CEPC software environment
 - CEPC V4 geometry
 - Tracker and magnet field
 - ECAL and HCAL
 - Muon detector
 - PFA reconstruction
 - Detect particles with optimal detector
 - Higgs boson mass could be reconstructed with the recoil mass method
 - Physics benchmarks
 - $\nu\nu H gg: 4\%$ BMR
 - Zuds: $e^+e^- q\bar{q}(q = uds)$ via Z

- Absorber thickness optimization
 - Klong with energy from 10 to 100GeV
 - HCAL Absorber thickness ranges from 10mm to 25mm
 - KL energy is reconstructed from ECAL and HCAL energy

KL events

- Use crystal ball function as fitting function
- The linearities are all within $\pm 3\%$ for different absorber thickness
- Resolutions are similar except 10mm absorber

KL linearity and resolution at different absorber thickness

Zuds events

- The $m_{visible}$ is reconstructed from all "visible" particles
- The resolution of $m_{visible}$ as a function of absorber thickness shows that 20mm is a turning point

- vvH gg events
 - The jets in vvH gg events have lower energy comparing to the jets in Zuds events
 - The Higgs mass is reconstructed as $m_{visible}$ in vvH gg events
 - The boson mass resolution(BMR) as a function of absorber thickness shows 15mm is the turning point

- Sampling Layer optimization
 - Total absorber thickness is fixed as 800mm and total scintillator thickness is fixed as 120mm
 - The thickness of PCB for each layer is 2mm
 - The number of sampling layers ranges from 20 to 50

KL reconstructed energy at different sampling layers

KL events

- The linearities are almost the same for different sampling layers
- More sampling layers have better resolution but means more cost

- vvH gg events
 - vvH gg events are reconstructed for different sampling layers
 - 30 sampling layers already reach the 4% BMR

- Scintillator thickness optimization
 - 40 layers: each layer has 20mm Steel and 2mm PCB
 - Scintillator thickness for each layer ranges from 2 to 5mm

KL events

- The linearities are almost the same for different scintillator thickness
- The linearities are all within $\pm 3\%$ for different scintillator thickness
- The resolutions are almost the same

KL linearity and resolution at different scintillator thickness

- vvH gg events
 - vvH gg events are reconstructed for different scintillator thickness
 - The difference of BMR is within 0.1%
 - The 3mm scintillator is a reasonable choice

vvH - gg events for different scintillator thickness

• Cell size optimization

 40mm cell size can satisfy the BMR requirement while reducing about half of the readout channels comparing to 30mm

Optimization results

- Prototype design and performance
 - Transverse size: $72 \times 72 \text{cm}^2$
 - 40 layers: each layer has 20mm steel,3mm scintillator and 2mm PCB
 - Cell size:40mm
 - Linearity: $\sim \pm 1\%$

Linearity and resolution for HCAL prototype

- Background
- AHCAL optimization
- Scintillator and SiPM
- HCAL Board Unit
- Summary and outlook

Production of scintillators

- 11000 scintillators have been produced using the injection molding technique
- The light yield of one scintillator is about 40 p.e. test by NDL-22-1313-15S

Wrapping of scintillators

- The material of the wrapper is ESR
- The whole wrapping and labelling procedure is automatic
- 100 scintillators cost 75min once

Batch Testing Platform

- Test the uniformity of all scintillators
- 144 channels one platform
- Auto-moving

•

• 3 batch testing platforms

USTC

SJTU

- MIP source : Sr 90
- The scintillator light is detected by the SiPM 13360-1325PE working at the 5V overvoltage
- The SiPM signal is read by the SPIROC2E chip

The MIP Spectrum

- Calibration
 - Self calibration of SJTU
 - Inter calibration between USTC and SJTU

- SJTU results
 - 6914 scintillators have been test
 - 95% scintillators's light yield are within mean $\pm 15\%$

The SiPM comparison

HPK-SiPM

- Low light yield, dark rate and crosstalk
- High breakdown
- High price

• NDL-SiPM:

- High light yield, dark rate and crosstalk
- Low breakdown
- Low price

Company	НРК		NDL	
Туре	13360-1325PE	14160-1315PS	22-1313-15S	
Light output [p.e.]	13	17	40	
Crosstalk[%]	1.59	1.17	4.4	
Dark Counts [kHz]	120	290	550	26
Breakdown[V]	53	38	27.5	

Batch test of SiPM

- The design of the SiPM test platform
 - Assure the uniformity of SiPMs
 - A SiPM detachable fixer
 - SKIROC2a readout or discrete-circuit readout
 - Test quality : break down voltage, dark count, gain

- Background
- AHCAL optimization
- Scintillator and SiPM
- HCAL Board Unit
- Summary and outlook

HBU(HCAL Basic Unit)

- The sensitive size of one layer is designed as $72 \times 72 \text{ cm}^2$
- A single layer is equally divided into 3 boards
- each HBU is 78.5×24 cm² and has 108 channels
- Every layer is controlled by one DIF board

• Electronic test

 The pedestal and charge calibration results mean that the chips are working normally

pedestal

Charge calibration

- Mechanics
 - The design for HBU has just started
 - Simulation focuses on how to support such a large PCB

- Slideway options
 - Commercial: reliable and time saving
 - Self designed: compact and flexible

commercial

Self designed

- Background
- AHCAL optimization
- Scintillator and SiPM
- HCAL Board Unit
- Summary and outlook

Time line

- We are late on HBU production, mechanics and prototype construction
- We are trying to produce 40 layers of HBU by the end of this year and start prototype construction next year
- Cosmic and beam test are still expected next year

Summary and outlook

Summary

- the optimization for AHCAL has been done, the prototype design has been settled
- 11000 scintillators have been produced and test, the light yield and uniformity reach our expectation
- The BNU SiPM is chosen for this prototype
- The HBU electronics works normally
- Outlook
 - The test platform for SiPMs will be completed before summer
 - Production of all 40 prototype layers will be finished this year
 - The next step, the whole prototype construction, will start before the end of this year, and the cosmic and beam test is expected next year

Back up

The SiPM simulation

- The dark count and threshold
 - The dark count spectrum has been simulated
 - The SiPM is S12571-025P
 - Crosstalk probability is 22.6%

The SiPM simulation

- For the BNU SiPM, the 0.5MIP equals 20p.e. while for the HPK SiPM, the 0.5MIP equals 10p.e.
- The probability that a Dark count is over 10p.e. is quite low, not to mention the 20p.e.
- From this point of view, PDE is dominant in the threshold issue

Cell size optimization

- Cell size is the key parameter for PFA oriented HCAL
- Cell size has a strong impact on both detector performance and cost
- Careful optimization has been done to reconstruction parameter

- Simulation Setup
 - CEPC Simplified Geometry: only AHCAL is implemented
 - Prototype Transverse size: $72 \times 72 \text{ cm}^2$
 - 40 layers: each layer has 20mm steel,3mm scintillator and 2mm PCB
 - Incident particle: Klong which's energy ranges from 10GeV to 80GeV

- Analysis
 - Fit by double side crystal ball function
 - Energy resolution as a function of incident particle's energy is described by $\frac{a}{\sqrt{E}} \oplus b$

- Prototype size optimization
 - 40 sampling layer, each layer has 20mm steel, 3mm scintillator and 2mm PCB
 - The transverse prototype size ranges from 240mm to 960mm
 - All have a linearity < $\pm 3\%$

- Prototype size optimization
 - Larger prototype size has less energy leakage and better resolution
 - Prototype size has a strong impact on the cost and power consumption of the prototype
 - 720mm is chosen to be the prototype transverse size

- Absorber thickness optimization
 - Prototype Transverse size: 72×72 cm²
 - 40 sampling layer, each layer has 3mm scintillator and 2mm PCB
 - Absorber thickness for each layer ranges from 15mm to 25mm
 - Total absorber thickness ranges from 3.8 λ to 6.3 λ
 - All have a linearity $< \pm 3\%$

- Absorber thickness optimization
 - Thinner absorber has a better sampling ratio resulting a smaller statistical term
 - Thinner absorber has larger leakage resulting a bigger constant term
 - The 20mm absorber can satisfy our need

- Sampling Layer optimization
 - Prototype Transverse size: 72×72 cm²
 - Total absorber thickness is fixed as 800mm and total scintillator thickness is fixed as 120mm
 - The thickness of PCB for each layer is 2mm
 - The number of sampling layers ranges from 20 to 60

- Sampling Layer optimization
 - More sampling layers have less statistical fluctuation
 - Since PCB thickness for each layer is fixed, it could be a problem for more sampling layers in the prototype
 - 40 layers is reasonable for the prototype

- Scintillator thickness optimization
 - Prototype Transverse size: $72 \times 72 \text{cm}^2$
 - 40 sampling layer, each layer has 20mm steel and 2mm PCB
 - The scintillator thickness for each layer ranges from 2mm to 5mm
 - All have a linearity $< \pm 3\%$

- Scintillator thickness optimization
 - Thicker scintillator has better resolution but the improvement isn't obvious
 - Thicker scintillator will increase total thickness and manufacture cost
 - 3mm scintillator is chosen for the prototype

AHCAL optimization

- CEPC software environment
 - CEPC V4 geometry
 - Tracker and magnet field
 - ECAL and HCAL
 - Muon detector
 - PFA reconstruction
 - Detect particles with optimal detector
 - Higgs boson mass could be reconstructed with the recoil mass method
 - Physics benchmarks
 - $\nu\nu H gg$
 - Zuds: $e^+e^- q\bar{q}(q = uds)$ via Z

- Absorber thickness optimization
 - Klong with energy from 10 to 100GeV
 - Absorber thickness ranges from 10mm to 25mm
 - KL energy is reconstructed from ECAL and HCAL energy

- Absorber thickness optimization
 - Use crystal ball function as fitting function
 - The linearities are all within $\pm 3\%$ for different absorber thickness

- Absorber thickness optimization
 - ECAL introduce more material comparing to Simplified geometry
 - The 10mm absorber has a worse resolution than others
 - The rms/mean reflects the leakage for different absorber

KL resolution at different absorber thickness

- Absorber thickness optimization
 - The $m_{visible}$ is reconstructed for each Zuds event
 - The resolution of $m_{visible}$ as a function of absorber thickness shows that 20mm is a turning point

- Absorber thickness optimization
 - The jets in vvH gg events have lower energy comparing to the jets in Zuds events
 - The Higgs mass is reconstructed as $m_{visible}$ in vvH gg events
 - The boson mass resolution(BMR) as a function of absorber thickness shows 15mm is the turning point

- Sampling Layer optimization
 - Total absorber thickness is fixed as 800mm and total scintillator thickness is fixed as 120mm
 - The thickness of PCB for each layer is 2mm
 - The number of sampling layers ranges from 20 to 50

KL reconstructed energy at different sampling layers

- Sampling layer optimization
 - The linearities are almost the same for different sampling layers
 - The linearities are all within $\pm 2\%$ for different sampling layers

- Sampling layer optimization
 - More sampling layers have better energy resolution

- Sampling layer optimization
 - vvH gg events are reconstructed for different sampling layers
 - 30 sampling layers can satisfy the 4% BMR requirement but prototype needs 40 sampling layers to fulfill the design target

Merge layer optimization

- The number of sampling layers is fixed as 40
- Combine the hits from adjacent layers to change the longitudinal segmentation without affecting the energy resolution

- Scintillator thickness optimization
 - 40 layers: each layer has 20mm Steel and 2mm PCB
 - Scintillator thickness for each layer ranges from 2 to 5mm

- Scintillator thickness optimization
 - The linearities are almost the same for different scintillator thickness
 - The linearities are all within $\pm 3\%$ for different scintillator thickness

- Scintillator thickness optimization
 - Different scintillator thickness doesn't have much difference on resolution

KL resolution at different scintillator thickness

- Scintillator thickness optimization
 - vvH gg events are reconstructed for different scintillator thickness
 - The difference of BMR is within 0.1%
 - The 3mm scintillator is a reasonable choice

vvH - gg events for different scintillator thickness

65

- Cell size optimization
 - The boson mass resolution(BMR) is reconstructed by arbor under CEPC V4 environment
 - 40mm cell size can satisfy the BMR requirement while reducing about half of the readout channels comparing to 30mm

- Prototype design and performance
 - Transverse size: $72 \times 72 \text{cm}^2$
 - 40 layers: each layer has 20mm steel,3mm scintillator and 2mm PCB
 - Cell size:40mm
 - Linearity: $< \pm 3\%$

