Plan of The Fourth Conceptual Detector

Jianchun Wang

Joint Workshop of the CEPC Physics, Software and New Detector Concept

Yangzhou, April 14-17, 2021

Physics Motivation of CEPC

. . .

- The CEPC aims to start operation in 2030's, as a Higgs (Z) factory in China. The plan is to operate
 - Above **ZH** threshold ($\sqrt{s} \sim 240 \text{ GeV}$) for 7 years.
 - Around and at the Z pole for 2 years.
 - Around and above W+W- threshold for 1 year.
 - It is upgradeable to run at the $t\bar{t}$ threshold.
- □ Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

0	peration mode	ZH	Z	W ⁺ W ⁻	
	\sqrt{s} [GeV]	~240	~91.2	158-172	
R	un time [years]	7	2	1	
	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	3	32	10	
CDR	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	
Latest	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	5	105.5	18.7	

The large samples from 2 IPs: **10**⁶ Higgs, **10**¹² Z, **10**⁸ W bosons, provide a unique opportunity for

- High precision Higgs, EW measurements,
- Study of flavor physics (b, c, tau) and QCD,
- Probe physics beyond the standard model.

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z\rightarrow e^+e^-,\mu^+\mu^-\\ H\rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
$H \to b\bar{b}/c\bar{c}/gg$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E=3\sim4\%$ at 100 GeV	
$H \to \gamma \gamma$	${\rm BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$	

- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

CEPC Detector in CDR (I)

CEPC Detector in CDR

The 4th Conceptual Detector Design

A Drift Chamber That is Optimized for PID

- Goal: $2\sigma \pi/K$ separation at P < ~ 20 GeV/c.
- For FST a supplement PID detector(s) is needed: DC to measure dN/dX, ToF of ~10 ps resolution, aerogel or gaseous RICH

More discussions on Thursday afternoon

High Granularity Crystal ECAL

More discussions on Thursday Morning

Solenoid Magnet

More discussions on Friday Morning

Selection of Detector R&Ds

Selection of Calorimeter R&D's

Detector & Software Presentations

Calorimeters + Muon

MDI, Mech., Magnet, Lumin, Ebeam

Discussions are encouraged at each session. There will be general discussions on Saturday.			Session II, April 15, Thursday (Haijun Yang, Huaqiao Zhang)			Session IV, April 16, Friday (Peilian Liu, Hongbo Zhu)		
			Status and planning of ECAL R&D	Yunlong Zhang	8:30	Progress and planning of MDI	Hongbo Zhu	
			Progress of the crystal ECAL	Yong Liu	9:00	Status of beam background study	Haoyu Shi	
			Reconstruction algorithm for ECAL	Shengsen Sun	9:30	Beam pipe, overall mechanics and integration	Quan Ji	
			break (30')		10:00	break (30')		
			Progress of the CEPC AHCAL	Yukun Shi	10:30	Status and plan of the LumiCal	Suen Hou	
		11:00	Progress of the CEPC SDCAL	Qiuping Shen	11:00	Solenoid magnet	Feipeng Ning	
		11:30	The CEPC muon detector	Xiaolong Wang	11:30	Beam energy measurement	Yongsheng Huang	
Session I, April 14, Wednesday (Lei Zhang, Qun Ouyang)			Session III, April 15, Thursday (Kai Yi, Linghui Wu)			Session V, April 16, Friday (Weidong Li, Xingtao Huang)		
13:30 Progress and planning of the Vertex detector	Zhijun Liang	13:30	Progress and planning of the TPC	Huirong Qi	13:30	The status of CEPCSW software framework	Jiaheng Zou	
14:00 Progress of the TaichuPix chip	Wei Wei	14:00	Front end ASIC and readout electronics for TPC	Zhi Deng	14:00	The simulation software for the CEPC experiment Tao Lin		
14:30 Progress of the JadePix chip	Yunpeng Lu	14:30	Charge particle ID	Mingyi Dong	14:30	Automated validation system for CEPC	Teng Li	
15:00 Wireless readout and control	Jun Hu	15:00	Drift chamber dN/dX simulation and reconstruction	Guang Zhao	15:00	Jet tagging algorithm	Gang Li	
30 break (30')		15:30	break (30')		15:30	break (30')		
16:00 Progress and planning of the Silicon Tracker	Harald Fox	16:00	Tracking software for the Drift Chamber	Yao Zhang	16:00	Integration of Pandora to CEPCSW	Wenxing Fang	
16:30 HV-CMOS sensor design and test	Jaap Velthuis	16:30	Simulation of PID with cluster counting technique	Federica Cuna	16:30	Status of ACTS integration to CEPCSW	Jin Zhang	
17:00 Tracking for Silicon Tracker at CEPC	Chengdong Fu	17:00	Physics impact of the PID	Shanzhen Chen	17:00	Data Management with Rucio and Xcache	Xiaomei Zhang	
17:30 Plan of the TDAQ	Zhenan Liu	17:30	Optimization of the tracking system	Xin Shi				

Si Vertex / Tracker + TDAQ

TPC, Drift chamber, PID

Towards A Paper of "The 4th Conceptual Detector"

- Aim for a "CDR-ish" paper on the new detector concept, to be submitted to NIMA (or RDTM) before the CEPC annual workshop at the end of October.
- From the discussions, we should have concensus on:
 - 1) Which detectors and sub-systems should be included? Info in the CDR do not need to be repeated. However, it may be a good idea to have a complete detecting system.
 - 2) What are the competitive technologies? Some comparisons may be necessary.
 - 3) What are the major technical challenges, and projections to the time of construction?
 - 4) What have already been achieved so far? What do we expect in a few months?
 - 5) Refine our selection of physics benchmarks to aid the detector design.
 - 6) ...
- Drafting of the paper may start very soon. A core group of editors will be formed.

Wish you all a pleasant stay & fruitful discussions !