Probing the EW Phase Transition with Exotic Higgs Decays at the CEPC

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

mjrm@sjtu.edu.cn 微信:mjrm-china

About MJRM:

Science

Family

Friends

CEPC Workshop, April 15, 2021

My pronouns: he/him/his # MeToo

References

- EWPT & Colliders General: MJRM 1912.07189
- EWPT & Exotic Higgs Decays:
 - Profumo, MJRM, Shaugnessy 0705.2425
 - Kozaczuk, MJRM Shelton 1911.10210
 - Carena, Liu, Wang 1911.10206

This talk

Key Question

Was there an electroweak phase transition ?

Key Ideas for this Talk

- Determining the thermal history of EW symmetry breaking is a key challenge for particle physics
- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders to address this challenge
- Exotic Higgs decays provide a unique probe of light scalar-induced thermal history modifications
- Interesting opportunities for the CEPC should be pursued → Snowmass study

4

CEPC Snowmass Study @ SJTU/TDLI

• Shu Li

- MJRMYanda Wu
 - Xuliang Zhu

Incoming PhD students

Outline

- I. Context & Questions
- II. Model Illustrations
- III. Exotic Higgs Decays
- IV. Outlook

I. Context & Questions

Was there an electroweak phase transition ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in next generation probes, could a cosmological phase transition be responsible ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
 - Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
 - Gravitational waves → If a signal observed in next generation probes, could a cosmological phase transition be responsible ?

EWSB Transition: St'd Model

Increasing m_h

10

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C$ (GeV)		
4D Isotropic	[76]	80 ± 7		
4D Anisotropic	[74]	72.4 ± 1.7		
3D Isotropic	[72]	72.3 ± 0.7		
3D Isotropic	[70]	72.4 ± 0.9		

EW Phase Diagram

SM EW: Cross over transition

EWSB Transition: St'd Model

Increasing m_h

Authors	$M_{\rm h}^C$ (GeV)		
[76]	80 ± 7		
[74]	72.4 ± 1.7		
[72]	72.3 ± 0.7		
[70]	72.4 ± 0.9		
	Authors [76] [74] [72] [70]		

SM EW: Cross over transition

How does new TeV scale physics change this picture ? What is the phase diagram ? EWPT ? If so, what kind ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in next generation probes, could a cosmological phase transition be responsible ?

EW Phase Transition: Baryogen & GW

* Need BSM CPV

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

20

rich possibilities for symmetry breaking

Bubble Collisions

Bubble Collisions

rich possibilities for symmetry breaking

Bubble Collisions

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

*T*₀ ~ 140 GeV

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \quad {\rm +} \; \cdots \;$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

$$T_0 \sim 140 \text{ GeV} \equiv T_{EW}$$

First Order EWPT from BSM Physics

Generate finite-T barrier

Introduce new scalar ϕ interaction with h via the Higgs Portal

First Order EWPT from BSM Physics

 $a_2 H^2 \phi^2$: T > 0loop effect

 $a_2 H^2 \phi^2$: T = 0tree-level effect

 $a_1 H^2 \phi$: T = 0tree-level effect

II. Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Real Singlet

Potential & conventions

$$V = -\mu^{2} \left| H \right|^{2} + \lambda \left| H \right|^{4} + \frac{1}{2} a_{1} \left| H \right|^{2} S + \frac{1}{2} a_{2} \left| H \right|^{2} S^{2} + b_{1} S + \frac{1}{2} b_{2} S^{2} + \frac{1}{3} b_{3} S^{3} + \frac{1}{4} b_{4} S^{4},$$

 $h_1 = h \cos \theta + s \sin \theta$ $h_2 = -h \sin \theta + s \cos \theta,$

Profumo, RM, Shaugnessy: h₁ = SM-like
Kozaczuk, RM, Shelton: h₁ = lightest

EW Phase Transition: Singlet Scalars

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({\rm GeV})$		
4D Isotropic	[76]	80 ± 7		
4D Anisotropic	[74]	72.4 ± 1.7		
3D Isotropic	[72]	72.3 ± 0.7		
3D Isotropic	[70]	72.4 ± 0.9		

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

Real Singlet: Z₂ or Not to Z₂?

Potential & conventions

 Z_2 symmetry: $S \rightarrow -S$

$$V = -\mu^{2} \left| H \right|^{2} + \lambda \left| H \right|^{4} + \frac{1}{2} a_{1} \left| H \right|^{2} S + \frac{1}{2} a_{2} \left| H \right|^{2} S^{2} + b_{1} S + \frac{1}{2} b_{2} S^{2} + \frac{1}{3} b_{3} S^{3} + \frac{1}{4} b_{4} S^{4}$$

 $h_1 = h \cos \theta + s \sin \theta$ $h_2 = -h \sin \theta + s \cos \theta,$

- Profumo, RM, Shaugnessy: h₁ = SM-like
- Kozaczuk, RM, Shelton: h_1 = lightest

 Z_2 symmetry: $\theta \rightarrow 0$

Real Singlet

No Z₂ breaking at T = 0 required

Z₂ breaking at T = 0 (explicit or spontaneous)

First Order EWPT from BSM Physics

- $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

First Order EWPT from BSM Physics

- $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

Can a light BSM scalar catalyze a first order EWPT ?

III. Exotic Higgs Decays

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Profumo, MJRM, Shaugnessy 0705.2425

Exotic Decay BR: Lower Bound

- Numerical scan indicates a lower bound as a function of singlet-like scalar mass
- Can we understand it analytically ?

Exotic Decay BR: Semi-Analytic Lower Bound

- Two-step transition
- SFOEWPT to Higgs phase
- A minimum exists along singlet direction at T > 0
- EW vac as absolute min at T = 0
- Singlet min is absolute min for some $T > T_{EW}$
- Tunneling is rate sufficiently large that the transition completes (numerical input required)

Exotic Decay BR: Semi-Analytic Lower Bound

△ Must be sufficiently large for tunneling to occur
 △ Taken from numerical studies

 $h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206

Future Projections

CEPC: 5 ab⁻¹

FCC-ee: 5 *ab*⁻¹ *ILC:* 2 *ab*⁻¹

Decay	95% C.L. limit on Br				
Mode	LHC	HL-LHC	CEPC	ILC	FCC-ee
Ęт	0.23 [49, 50]	0.056 [12-14]	0.0028 [16]	0.0025 [17]	0.005 [18]
$(b\bar{b}) + E_{\rm T}$	_	[0.2]	1×10^{-4}	2×10^{-4}	5×10^{-5}
(<i>jj</i>)+₽ _T	-	-	5×10^{-4}	5×10^{-4}	2×10^{-4}
$(\tau^+\tau^-) + E_T$	-	[1]	$8 \times 10^{-4*}$	1×10^{-3}	3×10^{-4}
<i>bb</i> +₽ _T	_	[0.2] [39]	3×10^{-4}	4×10^{-4}	1×10^{-4}
jj+₽T	_		5×10^{-4}	7×10^{-4}	2×10^{-4}
$\tau^+\tau^- + E_T$			8×10-4*	1×10^{-3}	3×10-4
$(b\bar{b})(b\bar{b})$	1.7 [51]	(0.2)	4×10^{-4}	9×10^{-4}	3×10^{-4}
$(c\bar{c})(c\bar{c})$	_	(0.2)	8×10-4	1×10^{-3}	3×10^{-4}
(jj)(jj)	_	[0.1]	1×10^{-3}	2×10^{-3}	7×10^{-4}
$(b\bar{b})(\tau^+\tau^-)$	[0.1]* [52]	[0.15]	$4 \times 10^{-4*}$	6×10^{-4}	2×10^{-4}
$(\tau^+\tau^-)(\tau^+\tau^-)$) [1.2]* [53]	$[0.2 \sim 0.4]$	$1 \times 10^{-4*}$	2×10^{-4}	5×10^{-5}
$(jj)(\gamma\gamma)$		[0.01]	1×10^{-4}	2×10^{-4}	3×10^{-5}
$(\gamma\gamma)(\gamma\gamma)$	$[7 \times 10^{-3}]$ [54]	$4 \times 10^{-4} *$	1×10^{-4}	1×10^{-4}	3×10-5

Z. Liu, L-T Wang, H. Zhang 1612.09284

 $h_2 \rightarrow h_1 h_1 \rightarrow 4b$

 $h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206

Invisible decays

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Invisible decays

Cancellation -> Fine tuning

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Spontaneous Z₂ Breaking

Carena, Liu, Wang 1911.10206

IV. Outlook

Was there an electroweak phase transition ?

Key Ideas for this Talk

- Determining the thermal history of EW symmetry breaking is a key challenge for particle physics
- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders to address this challenge
- Exotic Higgs decays provide a unique probe of light scalar-induced thermal history modifications
- Interesting opportunities for the CEPC should be pursued → Snowmass study ⁵⁰