$e^+e^- \rightarrow Zh \rightarrow \nu\bar{\nu} + SS1 + SS2 \rightarrow \nu\bar{\nu}q\bar{q}q\bar{q}$

with Lepton Colliders

Yulei Zhang^[1], Xiang Chen^[1], Jifeng Hu^[2], Liang Li^[1]
1 Shanghai Jiao Tong University
2 South China Normal University

Long-Lived Particle

Outline

Beyond the Standard Model

- Why LLPs interesting
- Search for LLPs at future collider
 - Cut-Based Analysis
 - Machine Learning
- Preliminary results
- Summary

The lifetime frontier ...

- Large majority of current collider experiment searches and analysis strategies assume the new particle decays promptly.
- Particle lifetimes span a very wide range and long lifetimes can generically appear in the BSM theories.
- Dedicated searches for long-lived BSM particles are necessary.

Sixth workshop of the LHC LLP Community

What is a long-lived particle?

Sixth workshop of the LHC LLP Community

Object (neutral or charged) decaying a macroscopic and reconstructible distance from IP Signal signature of a long-lived particle:

Neutral LLP decays are a spectacular signature, and the **burst of energy** appearing out of nowhere sets it apart from the collision point.

Phys. Rev. Lett. **122**, 131801 – 2019.04.03

LLP Searches at Lepton Colliders

- Energy: 240 GeV
- Mass of SS1: 1-50 GeV
- Mass of SS2: 1-50 GeV
- SS1, SS2's lifetime $\tau = R_{out}/c = 6m/c = 20 ns$

Basic Setup

- Muon Detector
 - $R_{\rm in} \approx 4m$
 - $R_{\text{out}} \approx 6m$
- $\Delta t = t_{\rm Hit} r_{\rm Hit}/c$
- Dominant Background
 - $e^+e^- \rightarrow ZH$
 - $e^+e^- \rightarrow qq$
- Full simulation with CEPC official software

First try with traditional reconstruction method (signal range: 4~6 meters)

Cut-based Analysis

Event Selection $(Z \rightarrow \overline{q}q)$

	Signal: $Z o \overline{q}q$	$e^+e^- ightarrow q \overline{q}$	$e^+e^- \rightarrow Zh$	Total
# of Events in 5.6 ab^{-1}		2.0×10^{8}	1.0×10^{6}	2.01×10 ⁸
# of Events simulated	$\sim 1.3 \times 10^{6}$	$\sim 0.99 \times 10^{7}$	$\sim 1.37 \times 10^{6}$	$\sim 2.87 \times 10^{6}$
Decay in Muon Detector	134,559	6,516,657	796,596	7,313,253
$\left m_{qq}-m_{Z} ight \leq15~{ m GeV}$	113,723	4,013,875	39,631	4,053,506
$\left m_{qq}^{rec}-m_{h} ight \leq15~{ m GeV}$	104,942	229,703	26,862	256,565
$0.23 \le y_{12} \le 0.72$	93,517	129,546	20,041	149,587
$E_{2j} \ge 30 \text{ GeV}$	69,468	72	16	88
$\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	68,368	50	11	61
Efficiency	50.80%	0.00077%	0.0014%	0.00083%

- qq is reconstructed by $e^+e^- k_T$ algorithm, which represents for the jets from primary vertex
- Using $anti k_T$ algorithm to cluster hits $(j_1 \& j_2)$ in Muon detector.

Event Selection $(Z \rightarrow \overline{\nu}\nu)$

	Signal: $Z o \overline{\nu} \nu$	$(e^+e^- ightarrow q\overline{q})^*$	$e^+e^- ightarrow Zh$	Total
# of Events in 5.6 ab^{-1}		2.0×10^{8}	1.0×10^{6}	2.01×10 ⁸
# of Events simulated	$\sim 1.0 \times 10^{6}$	$\sim 0.99 \times 10^{7}$	$\sim 1.37 \times 10^{6}$	$\sim 2.87 \times 10^{6}$
Decay in Muon Detector	89,757	6,516,657	796,596	7,313,253
E _{missing} > 190 GeV	89,437	463,421	6,413	469,834
<i>n_{rec}</i> < 8	88,103	281,897	3,901	285,798
$E_{2j} \ge 30 \text{ GeV}$	67,244	0	0	0
$\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	66,325	0	0	0
Efficiency	73.89%	_	—	_

• $e^+e^- \rightarrow qq$ is scaled by $e^+e^- \rightarrow Zh$ process

Mass of 2 prompt jets

- qq is reconstructed by $e^+e^- k_T$ algorithm, which represents for the jets from primary vertex
- Background is normalized to the scale of signal.

Shower distance

- qq is reconstructed by $e^+e^- k_T$ algorithm, which represents for the jets from primary vertex
- Background is normalized to the scale of signal.

Time Difference vs. Energy

- Background is normalized to the scale of signal.
- Only count the energy in Muon detector

Time Difference vs. Energy

- Background is normalized to the scale of signal.
- Only count the energy in Muon detector

Estimation of comic ray

- Energetic muon goes in muon detector (E > 30 GeV)
- Muon travels with certain angle ($\theta > 60^\circ$)
- $n_{CR} = \left(\Phi_{\mu} \times A_{CEPC} \times T_{CEPC} \times 2\pi\right) \times \sigma_{P} \left(\frac{dE}{dx} \ge 12.5 GeV\right) \times \sigma_{\theta} = 0.02$

The overall distribution function as a function of both the energy and the zenith angle then can be written as

$$I(E,\theta) = I_0 N (E_0 + E)^{-n} \left(1 + \frac{E}{\epsilon}\right)^{-1} D(\theta)^{-(n-1)}.$$
 (10)

Here, the function $D(\theta)$ is given by Eq 7. If the Earth is assumed to be flat then $D(\theta) = 1/\cos\theta$ which on putting in Eq. 9 leads to

$$\Phi(\theta) = I_0 \cos^{n-1}\theta. \tag{11}$$

$$\frac{dN_{\mu}}{dEd\Omega} \approx 1400 E_{\mu}^{-2.7} / (\mathrm{m}^2 \mathrm{sGeVsr}) \left(\frac{1}{1 + \frac{1.1\mathrm{E}\cos\theta}{\epsilon_{\pi}}} + \frac{0.054}{1 + \frac{1.1\mathrm{E}\cos\theta}{\epsilon_{\mathrm{K}}}}\right), \tag{12}$$

https://arxiv.org/pdf/1606.06907.pdf

14

Expected Limits

	Signal	Total Background	Expected Limits
$e^+e^- ightarrow Zh ightarrow (Z: \overline{q}q) \overline{q}q \overline{\nu} u$	43,176	511	9.5×10^{-4}
$e^+e^- ightarrow Zh ightarrow (Z; \overline{ u} u) \overline{q} q \overline{ u} u$	17,680	~0.02 (CR)	5.1×10^{-4}

- Limits are the minimal branching ratio of Higgs decaying to LLPs (the smaller the better).
- Cosmic Ray(CR) veto efficiency is calculated by the filter that the time difference of two clusters on the outermost cell must be less than 2.4 meters. (signal inefficiency~ 2.1%)
- Signal Yield: $n_s = \mathcal{L} \times \sigma(e^+e^- \to Zh) \times \sigma(Z \to qq, \bar{\nu}\nu) \times \epsilon_{sig} \times \epsilon_{CR}$

How about those LLPs within Calorimeters? (signal range: extend to 1~6 meters)

ML based Analysis

Deep Residual Network, ResNet

- Firstly, appeared in the ILSVRC 2015 classification challenges (ImageNet Large Scale Visual Recognition Challenge)
- ResNet18, ResNet50, ResNet101...

Configuration

- Input Format: image with resolution of $(R, \phi) = 200 \times 200$ and 1 to 3 channel(s)
 - $R_i = i \times \Delta R_i$, R starts from 0 m to 8 m.
 - ϕ starts from $-\pi$ to π
 - Energy is the sum of both Tracker hits and Calorimeter hits.
 - Time is the maximum ΔT (E > 0.1 GeV) within (R, ϕ) pixel
- Model: ResNet18 (Classification), ResNet50 (Vertex Finding)
- **Binary Cross Entropy Loss:** $loss(x_i, y_i) = -\omega_i [y_i \log(x_i) + (1 y_i) \log(1 x_i)]$

Long-Lived Particle

2021/4/15

Preselection

	Signal	ZH	eeqq
Raw Entries	0.5×10^{6}	0.93×10^{6}	0.99×10^{7}
$50 < m_{qq} < 180 \ \&\& 35 < m_{\rm recoil} < 175 \ \&\& 0.25 \leq y_{12} \leq 0.72$	3.8×10^{5}	182,844	848,529
Efficiency	72.41%	19.66%	8.57%

ResNet18 (2 channel: $E, \Delta T$)

	$n_1 = 1 \& n_2 = 1$	ε	Weight
Signal	377742	99.99%	×1
ZH	0	0.00%	×1
eeqq	0	0.00%	×25

- Due to the limited computing power, it's hard to simulate all $e^+e^- \rightarrow q\bar{q}$ samples (~2.5×10⁸)
 - Available samples on lxslc7@ihep $\sim 1.0 \times 10^7$

Expected Limits

	Signal	Total Background	Expected Limits		
$e^+e^- ightarrow Zh ightarrow (Z:\overline{q}q)\overline{q}q\overline{ u} u$	373308	0.02 (CR)	2.4×10^{-5}		
$e^+e^- ightarrow Zh ightarrow (Z; \overline{ u} u) \overline{q} q \overline{ u} u$	92,367	0.02 (CR)	9.8×10^{-5}		
Combined limit: 1.9×10 ⁻⁵					

- Limits are the minimal branching ratio of Higgs decaying to LLPs (the smaller the better).
- Cosmic Ray(CR) veto efficiency is calculated by the filter that the time difference of two clusters on the outermost cell must be less than 2.4 meters. (signal inefficiency~ 2.1%)
- Signal Yield: $n_s = \mathcal{L} \times \sigma(e^+e^- \to Zh) \times \sigma(Z \to qq, \bar{\nu}\nu) \times \epsilon_{sig} \times \epsilon_{CR}$

Sensitivity

2 jets final state

- HL-LHC: $> 1 \times 10^8$ Higgs
- CEPC: ~1×10⁶ Higgs

Preliminary Study: Vertex Finding With ML

60 -

0

10

20

mooth L1 Loss:
$$loss(x, y) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0.5 \times (y_i - f(x_i))^2, & \text{if } |y_i - f(x_i)| < 1 \\ |y_i - f(x_i)| - 0.5, & \text{otherwise} \end{cases}$$

30

40

50

60

2021/4/15

S

Preliminary Study: Vertex Finding Results

- $\Delta R = R_{pred} R_{truth}$ $\Delta \phi = \phi_{pred} \phi_{truth}$
- pixel size: 7.1cm
- Initial result looks very promising

Summary

- A preliminary study has been performed on Long-Lived Particle ($h \rightarrow q\bar{q}v\bar{v}$ and $h \rightarrow q\bar{q}q\bar{q}$) based on CEPC_V4.
- Time of flight and Energy deposition in Muon detector are the two main variables with good separation power.
- Preliminary study using deep ML techniques done:
 - results looks very promising
 - improve training on vertex finding and explore other possibilities with ML

Thanks

Backup

CERN

Challenges of searching for BSM LLPs

- Final states:
 - Limited by how well the experiments can reconstruct final state objects
- Displacement:
 - High displacement helps to discriminate against SM backgrouds
 - High displacement searches are also limited by the physical size of the detector
 - Need very good vertexing and tracking techniques to reconstruct displaced vertex

Sixth workshop of the LHC LLP Community

Time Difference (Normalized)

$$\Delta t = t_{\rm Hit} - r_{\rm Hit}/c$$

- Using FastJet Algorithm to cluster hits in Muon detector.
- Determine hit point by select min(j1, j2)

Time Stamp Tagging

- Initial State Radiation Photon (ISR)
 - Isolated photon from primary vertex
 - Precise time information from ECAL hits.
 - Production cut: $|\eta| \le 3.0 \&\& E \ge 0.1 GeV$
 - $h \to q\bar{q}q\bar{q}$ (4 jets), apply to $Z \to \ell^{\pm}\ell^{\mp}$ & $Z \to \bar{\nu}_{\ell}\nu_{\ell}$
 - $h \rightarrow q\bar{q}\nu\nu$ (2 jets), apply to $Z \rightarrow inclusive$

	$m{h} ightarrow 4 m{j}$	h ightarrow 4j with ISR (no cut)	h ightarrow 4j with ISR (with cut)
$\sigma/\sigma_{h ightarrow 4j}$	1.0000	0.8329	0.1569

The cross section ratio is calculated by MadGraph5

Reconstructed ISR γ Efficiency

Higgs decay mode	Z decay mode	$\sigma/\sigma_{h ightarrow 4j,Z ightarrow ext{inclusive}}$	$\epsilon_{\gamma_{ m ISR}}$		
	inclusive	1.000	$\epsilon_{\text{inclusive}}^{\gamma} = 28.40\%$		
4 jets:	$q \overline{q}$	0.658	11.10%		
$SS1 \rightarrow q\bar{q}$ $SS2 \rightarrow q\bar{q}$	$\ell^{\pm}\ell^{\mp}(\ell=e,\mu)$	0.066	82.20%		
	$ u \overline{ u}$	0.196	79.95%		
2 jets:	inclusive	0.386	$\epsilon_{\text{inclusive}}^{\gamma} = 29.61\%$		
	$q \overline{q}$	0.266	10.79%		
$SS1 \rightarrow qq$ $SS2 \rightarrow v\bar{v}$	$\ell^{\pm}\ell^{\mp}(\ell=e,\mu)$	0.026	81.99%		
	$ u ar{ u}$	0.080	80.33%		
$\epsilon_{\rm total}^{\gamma} = 39.83\%$					
$\epsilon_{\text{final}}^{\gamma} = 32.53\%$ (excluding 6 jets final state)					

The cross section ratio is calculated by MadGraph5

Long-Lived Particle

Discussion on ISR γ

- Current ISR γ selection:
 - Isolated($\Delta R > 0.3$) γ with maximum $\cos(\theta)$ or *E*
 - No big difference using $\cos(\theta)$ or *E*
- $\epsilon_{Z \to \ell^{\pm} \ell^{\mp}} \geq \epsilon_{Z \to \nu \overline{\nu}} \gg \epsilon_{Z \to q \overline{q}}$
 - The reason why leptonic decay has the best efficiency is because of FSR γ .
 - Relatively low ISR γ efficiency for $Z \rightarrow q\bar{q}$ (due to jet background)
- Other options for tagging:
 - γ from other prompt process ($q\bar{q}$)

γ from prompt process ($q\bar{q}$)

- $\pi^0 \rightarrow \gamma \gamma$
- In MC, over 99.3% jets have a large amount of $\pi^0 \rightarrow$ Plenty of γ as time stamp.
- In $Z \rightarrow q\bar{q}$, $h \rightarrow q\bar{q}\nu\bar{\nu}$ samples, require γ selected from the constituents of jets.
- Efficiency of Reconstructing a γ from jet: $\epsilon_{rec} \ge 99\%$
- Efficiency of Reconstructing a γ from jet with MC truth link: $\epsilon_{rec}^{MC} = 86\%$
- Efficiency of acceptance cuts: $\epsilon_{accept} = 95.2\%$
- Final efficiency for $Z \rightarrow q\bar{q}$: $\epsilon_{\text{final}}^{\gamma} = 86\% \times 95.2\% = 81.94\%$ (much larger than ISR)

	ϵ^{Z}_{rec}	ϵ_{rec}^{MC}	ϵ_{accept}	$\epsilon^{\gamma}_{Z ightarrow qar{q}}$
4 jets:	64.93%	85.21%	96.18%	53.21 %
2 jets:	93.17%	86.07%	95.20%	76.34 %

 ϵ^{Z}_{rec} : 60 GeV $\leq M^{Z}_{q\bar{q}} \leq 120$ GeV

Estimation of comic ray

- **Top right plot:** angle distribution of cosmic muon. About 99% of muon is smaller than 60 degree
- Bottom right plot: histogram of cosmic muon energy distribution. A rough estimation is made that only 0.09% of muon is over 30GeV

Estimation of comic ray

•
$$<\frac{dE}{dx}>\sim\frac{30\ GeV}{2.4\ m}\sim12.5\ GeV/m$$
 in muon detector

- $\sigma\left(\frac{dE}{dx} \ge 12.5 GeV\right) \sim 1 \times 10^{-9}$
- $n_{CR} = (5 \times 10^{-5} \times 6.1 \times 10^{6} \times 1200^{2} \times 2\pi) \times (1 \times 10^{-9}) \times (8.6 \times 10^{-3}) = 0.0236$

The overall distribution function as a function of both the energy and the zenith angle then can be written as

$$I(E,\theta) = I_0 N (E_0 + E)^{-n} \left(1 + \frac{E}{\epsilon}\right)^{-1} D(\theta)^{-(n-1)}.$$
 (10)

Here, the function $D(\theta)$ is given by Eq 7. If the Earth is assumed to be flat then $D(\theta) = 1/\cos\theta$ which on putting in Eq. 9 leads to

$$\Phi(\theta) = I_0 \cos^{n-1}\theta.$$

$$\frac{dN_{\mu}}{dEd\Omega} \approx 1400 E_{\mu}^{-2.7} / (\mathrm{m}^2 \mathrm{sGeVsr}) \left(\frac{1}{1 + \frac{1.1E\cos\theta}{\epsilon_{\pi}}} + \frac{0.054}{1 + \frac{1.1E\cos\theta}{\epsilon_{\mathrm{K}}}} \right),$$
(11)
(12)

https://arxiv.org/pdf/1606.06907.pdf

ResNet18 (1 channel: E)

 Loss
 Accuracy
 Test Loss
 Test Accuracy

 ZH
 0.002477
 0.999239
 0.007901
 0.999773

 eeqq
 0.001880
 0.999309
 0.006324
 0.998264

ResNet18 (1 channel: E)

	0.99	ϵ	0.999	ϵ	0.9995	ε	0.9999	ϵ
Signal	39056	98.63%	38330	96.79%	37878	95.65%	8223	20.77%
ZH	4	0.004%	0	0.000%	0	0.000%	0	0.000%
Signal	34103	98.00%	33216	95.45%	31917	91.72%	15869	45.60%
eeqq	21	0.003%	6	0.001%	5	0.001%	0	0.000%

• Combined ZH and eeqq ML_score can cut all the backgrounds.

2021/4/15