Physics impact of the PID

Joint workshop of the CEPC physics software and new detector concept Yangzhou, 15 April 2021

Shanzhen Chen*, also reporting contributions from Ryuta Kiuchi* and others *IHEP, CAS

- Introduction
- Impact of K pi PID information studied with B_(s)^o -> hh
- Impact of K pi PID information studied with B_s -> (D_s->KKpi) pi
- Conclusions

Contents

Introduction

- In order to reconstruct heavy flavor decays, charged particle ID information is crucial • Ideally, with accurate track momentum and particle energy measurements, mass of
- the particle can be determined by

... therefore, PID can be determined

- In reality, E and p cannot be measured accurately, therefore PID information from TPC / Drift chamber / Cherenkov detector etc. are important
- This study shows how the PID information impact the physics performance

 $M = sqrt(E^2 - p^2)$

Impact of K pi PID information studied with B_(s)⁰ -> hh

Studies with B_(s)->hh channel

- Studied with centralized CEPC simulation production
- Decay channels: B_(s)->hh, h=K or pi (with radiative decay allowed)
- Reconstructed signals (charged conjugated events are considered)
 - Within the mass window [5.1, 5.6] GeV/c²: B->hh: 17132, B_s ->hh: 5340
- Assumptions:
 - Backgrounds eliminated completely, no other particles

Scenario 1: Ideal case

- ... or the "MC truth":
- B and B_(s) mass distributions: two delta functions

Scenario 2: Real world without PID

- Assumptions: Momentum measurements resolution ~0.2%, and the resolution is isotropic Energy measurements resolution ~1% No PID information provided
- K / pi separation is extremely difficult, separation of B / B_s is impossible •

Scenario 3: with perfect PID

- K / pi mass constrained to their PDG mass
- Clear separation of $B\,/\,B_s$
- Fit functions: CB+Gauss for both B and B_s
- Yields from the fits:
 - B: 17099 +/- 151
 - Bs: 4975 +/- 70
- Reminder, MCTruth: B->hh: 17132, B_s->hh: 5340
- Very close!

Scenario 4: with imperfect PID

- In reality, it is difficult to have 100% PID efficiency
- Assumption:
 - PID efficiency uniformly distributed vs. momentum
- Example: 90% PID efficiency
- Looks OK, still can separate B / B_s
- But how good it is?

Indicators vs. PID efficiency

- Scan of the hh invariant mass vs. PID efficiency
- Examples shown here: PID efficiency 50%, 70%, 80% 90%, 95%, 100%
- Indicators: \bullet
 - Mean values of the mass peaks form the fits
- Can make plots of Indicators vs. PID efficiency

Yields vs. PID efficiency

- Red horizontal lines: Expected yield for B (upper line) and B_s (lower line) "MCTruth"
- Blue points: B yields from fits
- Green points: B_s yields from fits
- Shaded areas: uncertainties from fits
- Yields close to MCTruth yields with PID efficiency > ~95%

Mass vs. PID efficiency

- Red horizontal lines: PDG mass for B (lower line) and B_s (upper line)
- Blue lines: B, Green lines: B_s
- Dark blue/dark green lines: Mean values of CB function
- Light blue/light green lines: Mean values of Gaussian function
- Shaded areas: uncertainties from fits
- Fitted B mass close to PDG with PID efficiency > ~95%

PID Efficiency

Alternative momenta resolutions

- resolution
- Momentum resolution 0.15%: Mass ok with > \sim 92% PID efficiency

• Same procedures are done with samples at 0.15% and 0.1% momenta measurement

Alternative momenta resolutions

- Momentum resolution 0.1%: Mass ok with > -90% PID efficiency

• It seems that with better momenta resolution, we can tolerate lower PID efficiency

Indicators vs. PID efficiency

500

400

300

200

600 [

400E

200

5.2

5.2

- Momentum resolution 0.1%: Fits to the M(hh) under different PID efficiency
- Examples shown here: PID efficiency 50%, 70%, 80% 90%, 95%, 100%
- Third peak in low PID efficiency: One pion misidentified as Kaon, and with better momentum 1400 resolution, we can distinguish 1200 1000 them 800

Plan for the next steps

- PID efficiency as function of momentum
- Anisotropic momentum measurements resolution
- Backgrounds
- Proton PID
- Study with other possible indicators
- Collaborate with Tracking & PID detector experts for the detector designs

Impact of K pi PID information studied with $B_s \rightarrow (D_s - KKpi)$ pi

Studies with $B_s \rightarrow (D_s \rightarrow KKpi)$ pi

- Studied with centralized CEPC simulation production
- Reconstructed $B_s \rightarrow (D_s \rightarrow KKpi)$ pi events: 66

Mass (B_s^0/D_s) from MC Truth info.

• Events are tagged/selected from MC truth by finding corresponding decay topology. (i.e. find Bso, $B_s^{o} \rightarrow D_s pi$, $D_s \rightarrow K K pi$)

19

Reconstructed mass

- Perfect PID scenario
- PDG mass according to MCTruth info

• Reconstructed events with CEPC_v4 detector effects, K pi are constrained to their

Reconstructed mass

- according to MCTruth
- We could identify non-zero mis ID rate

• Reconstructed events with CEPC_v4 detector effects, No additional PID correction

Reconstructed Mass distribution with wrong PID

- Intentionally change one of MCTruth pions to kaon ID
 - i.e. $B_s^{o} \to (D_s \to K K pi) pi$ or K K

- Peak shifted rightwards
- Reconstructed events in much wider mass range

Conclusions

- PID information is crucial for the reconstruction of heavy flavor decays
 The impact of PID information to the physics performance is studied with
- The impact of PID information to the simulation samples
- A strategy of testing PID requirements is established
- Will collaborate with detector experts for further studies