CEPC Tracking System Optimization

Xin Shi

On behalf of the CEPC Tracker Team

2021.04.15

Joint Workshop of the CEPC Physics, Software and New Detector Concept

Yangzhou

Outline

- Introduction
- Drift chamber optimization for PID
- Tracking optimization
- Summary and Plan

Introduction

- Three existing detector concept for CDR
 - Silicon + TPC
 - Full Silicon Tracker
 - IDEA Concept

- The 4th detector concept
 - Silicon Vertex + Siliconn Tracker for momentum measurement
 - Drift chamber optimized for PID
 - Transverse crystal bar ECAL optimized for π^0/γ reconstruction
 - Solenoid magnet between HCAL and ECAL

Physics Requirements for CEPC detector

• Higgs physics

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 imes 10^{-5} \oplus rac{0.001}{p({ m GeV}) \sin^{3/2} heta}$
$H ightarrow b ar{b} / c ar{c} / g g$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H ightarrow q ar q, WW^*, ZZ^*$	${ m BR}(H o q \bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{{ m jet}}/E=3\sim4\%$ at 100 GeV
$H ightarrow \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = onumber \ rac{0.20}{\sqrt{E(ext{GeV})}} \oplus 0.01$

- Flavor physics: excellent PID, better than 2σ K/ π separation up to ~20 GeV
- EW measurements: High precision luminosity measurement, $\delta L/L \sim 10^{-4}$

Tracking system requirement of CEPC detector

• Vertex :

$$5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$$

• Silicon Tracker : $\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$

• Drift chamber : 2σ K/ π separation up to 20 GeV

Tracker Optimization Roadmap

Performances

- Momentum resolution
- Impact parameter resolution
- dE/dx or dN/dx resolution

Tracker layout

- Layout of Si trackers
- Size and number of cells of the gaseous detector (taking into account X/X0, B, gas ...)

- Short term plan
 - determine the preliminary layout of the tracker with fast simulation
- Long term plan
 - optimize the design with full simulation and benchmark physics channels

Software for tracker optimization

- LiC Detector Toy (LDT) A fast single-track simulation and reconstruction tool, aiming at the optimization of tracking detector design
- Acts Common Tracking Software (ACTS) An experiment-independent toolkit for charged particle track reconstruction in high energy physics experiments
- tkLayout A modeling and performance analysis tool developed at CMS for the study of a new silicon tracker
- Fast Tracker Simulation (FastTrkSim) A fast simulation for tracking detector optimization, developed by Linghui Wu
- Validation with different fast simulation tools

Size of Drift Chamber

- Investigating momentum resolution using FastTrkSim
 - Outer R of DC is fixed to be 1.8m, one layer of silicon (SET) outside of DC
 - N layers of SITs between vertex detector and DC with equal spacing (N=3,4,5)

• 100 layers of DC (from 0.8m to 1.8m) to balance momentum resolution and PID

Number of layers for Si tracker

• 3 or 4 layers of silicon tracker between VXD and DC

• Start with 4 layers as baseline with more space points for low momentum tracking

Configuration for simulation study

Sub detector	N layers	Resolust	Material budget (%X ₀)	
		r-ф	Z	
VXD	6	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15 per layer
SIT	4	7.2	86.6	0.65 per layer
DC (cell 1x1cm ²)	100	100	2000	1.2
SET	1	7.2	86.6	0.65
Total	111			5.35

Impact parameter resolution

• As expected, no change for impact parameter resolution, fulfilled the requirement

Momentum resolution

• Better resolution at low momentum

R. Kiuchi

$Cos(\theta)$ dependence

• Slight degradation of in the forward region due to material budget increase

13

Y. Chen, J. Zhang

Cross check with ACTS

• Roughly consistent results with LDT

Summary and Plan

- The tracking system of the 4th CEPC detector concept has been evaluated
- Drift chamber with 100 layers (0.8m ~ 1.8m) can reach up to 2σ K/ π separation at 15 GeV as a starting point
- With 4 layers of SIT reached better resolution in low momentum

Plan

- Drift Chamber with further validation and optimization with full simulation
- Improve the tracking system with material, si-tracker resolution, layout
- Systematic study with EndCap region
- Consider smaller tracker volume

Backup

Optimization of inner DC size

- Reducing size of DC could improve momentum resolution significantly. 100 layers might be proper taking into account both tracking and PID
- For DC with 100 layers, 3 or 4 layers of CMOS pixel tracker between vertex detector and DC should be good. 4 layers of pixel tracker might be better because of :
 - Better momentum resolution for high momentum tracks
 - More space points for low momentum tracking

Constrains from PID

• A full simulation including signal induction, response of pre-amplifier and white noise is performed

Cross check with full simulation using tkLayout

• Consistent results with LDT and ACTS

Options

- SIT/SET
 - Material
 - 0.17mm Si + 1.0mm C = 0.65% X0
 - 0.15mm Si + 0.5mm C = 0.39% X0
 - Layer
 - 3 SIT + 1 SET
 - 4 SIT + 1 SET
- SET
 - Pixel: $\sigma_{rphi} = 7.2 \mu m$, $\sigma_z = 86 \mu m$
 - Strip: $\sigma_{rphi} = 7.2 \mu m$ double $\rightarrow \sigma_{rphi} = 5.1 \mu m$, material $\times 2$
- Air from VXD shell to DC: 0.18% X0
- DC
 - shell
 - inner: 0.2mm CarbonFiber = 0.07% X0
 - outer: 2.8mm CarbonFiber = 0.49% X0
 - radius
 - 805-1805: GasHe_90Isob_10 = 0.07% X0
 - 1005-1805: GasHe_90Isob_10 = 0.06% X0

C. Fu

R. Kiuchi

Baseline CRD Config file Vertex + SIT

Vertex Detector (VTX)

Number of layers	:	8							
Description (optional)	:	-Beamt.	-		Vertex	x detector			
Names of the layers (opt.)	:	XBT,	VTX1,	VTX2,	VTX3,	VTX4,	VTX6,	XVTX6,	XVTXSHELL
Radii [mm]	:	14.5,	16.0,	18,	37.0,	39,	58,	60,	65
Upper limit in z [mm]	:	4225,	62.5,	62.5,	125,	125,	125,	125,	145
Lower limit in z [mm]	:	-4225 ,	-62.5,	-62.5,	-125 ,	-125 ,	-125 ,	-125 ,	-145
Efficiency RPhi	:	0,	1.00,	1.00,	1.00,	1.00,	1.00,	1.00,	0
Efficiency 2nd coord. (eg. z	z):	-1							
Stereo angle alpha [Rad]	:	pi/2							
Thickness [rad. lengths]	:	0.0015,	0.0015,	0.0015,	0.0015,	0.0015,	0.0015,	0.0015,	0.0015
error distribution	:	0							
0 normal-sigma(RPhi) [1e-6m]	1:	2.8, 6,	4, 4, 4, 4						
sigma(z) [1e-6m]	1:	2.8, 6,	4, 4, 4, 4						
Silicon Inner Tracker (SIT)									
Number of layers	:	6							
Description (optional)	:		Inner	tracker	TPC in	ner wall			
Names of the layers (opt.)	:	SIT1,	SIT2,	SIT3,	SIT4,	XTPCW1,	ХТРС	CW2	
Radii [mm]	:	78.0,	318.0,	558.0,	798.0,	799 ,	1801	L	
Upper limit in z [mm]	:	150.0,	750.0,	1300,	1300,	2900,	2900)	
Lower limit in z [mm]	:	-150.0,	-750.0,	-1300,	-1300,	-2900,	-2900)	
Efficiency RPhi	:	1.00,	1.00,	1.00,	1.00,	0,	0		
Efficiency 2nd coord. (eg. z)	:	-1,							
Stereo angle alpha [Rad]	:	pi/2,							
Thickness [rad. lengths]	:	0.0065,	0.0065,	0.0065,	0.0065,	0.002,	0.01	L	
error distribution	:	0							
0 normal-sigma(RPhi) [1e-6m]	:	7.2							
sigma(z) [1e-6m]	:	86.6							

R. Kiuchi

Baseline CRD Config file DC+ SET

Time Projection Chamber (TPC)

sigma^2=sigma0^2+sigma1^2*sin(beta)^2+Cdiff^2*6mm/h*sin(theta)*Ldrift[m]

:	100
:	800,1800
:	2900
:	-2900
:	1
:	1
:	0.00003356
:	100
:	0
)]:	0
:	2828
:	0
)]:	0
	: : : : : :)] : : : : : :

Magnetic field and beam spot

Solenoi	id	ma	gnetic	field	[T]	:	3.0	
Range i	in	х	[mm]			:	-0.0	0.0
Range i	in	у	[mm]			:	-0.0	0.0
Range i	in	z	[mm]			:	-0.0	0.0

Silicon External Tracker (SET)

Number of layers :	1
Description (optional) :	External Tracker
Names of the layers (opt.) :	SET1,
Radii [mm] :	1811,
Upper limit in z [mm] :	2900,
Lower limit in z [mm] :	-2900,
Efficiency RPhi :	1.00,
Efficiency 2nd coord. (eg. z):	-1,
Stereo angle alpha [Rad] :	pi/2,
Thickness [rad. lengths] :	0.0065,
error distribution :	0
0 normal-sigma(RPhi) [1e-6m] :	7.2,
sigma(z) [1e-6m] :	86.6,