

Detector Requirements analysis on the Pi-Kaon separation

YUAN ZY, ZHENG TF

Institute of High Energy Physics, CAS

Outline

- Introduction
- PID(dEdx TOF) info for π , K, p
- \triangle dEdx, \triangle TOF, Separation Power and Average Separation Power for π , K
- Impact parameter info for π, K, p
- VTX and PID for reconstruction process
- Summary

Introduction

A event in detector: collection of final state particles

A particle: 4 + 3 + 3 variables

- P4: (E, p_x, p_y, p_z) or (E, m, θ, φ) ... $(E^2 = p^2 + m^2)$
- Where it starts: impact parameters, not available for neutrals.
- Where it ends: K_s , Λ , B, D ..., only applicable for long lived particles.

To study the fully charged decay process, we need to identify charged Kaon(hadrons) up to 20 GeV. For objects with kaon and/or proton in its decay product:

Performance depends on

- Momentum (fully charged final state)
- Hadron separation, especially π , K separation
- VTX reconstruction. (for heavy flavor hadrons)

Introduction

Reconstruction efficiency * purity vs $\pi - K$ separation power

Made by ZHENG TF

Introduction

- CEPC Baseline Detector Concept

The inner, outer radius and drift length of the TPC(R_{in} and R_{out}) are chosen as the boundary conditions to record the time of flight for particles π , k, p.

Preliminary layout of the tracking system of the CEPC baseline detector concept

• π * Κ ______whi

▲ p

15

20

P/(GeV)

TOF for π, K, p

10

5

 $\cos\theta = 0.5$

10

8

6

TOF/(ns)

The calculation for TOF:

 $t_{total} = \frac{L_{total}}{\beta \gamma c}$ z-direction projection is used to simplify the question.

$$t_z = t_{total} = \frac{\Delta z}{\beta_z \gamma c},$$

where Δz equals to the difference of z_{in} and z_{out} , x' which are depended on the inner and outer radius of the TPC(R_{in} and R_{out}).

A circular helix of radius R, slope $\frac{R}{\tan \theta}$ and central axis (A_x, A_y, z_{const}) of the particle generation point is described by the following parametrization:

$$\begin{cases} x = R\cos\varphi + A_x, \\ y = R\sin\varphi + A_y, \\ z = \frac{R\varphi}{\tan\theta} + z_{const}, \end{cases}$$
where $z_{const} = z_0 - R\frac{\varphi_{pca}}{\tan\theta}, \varphi_{pca} = \varphi + \frac{\pi}{2}, A_x = R\cos\varphi - d_0\sin\varphi \text{ and } A_y = R\sin\varphi + d_0\cos\varphi.$

Note that if $\omega > 0$, then φ in the last equation should reverse sign and $\varphi_{pca} = \varphi - \frac{\pi}{2}$.

dEdx&TOF distribution for π , K, p

2 GeV $\cos \theta = 0.5$

Δ dEdx & Δ TOF distribution for $\pi - K$

Separation Power for $\pi - K$

2 GeV $\cos \theta = 0.5$

Separation Power between particle π , *K* is defined as follow:

$$S_{\pi K} = \sqrt{\frac{(I_{\pi} - I_{K})^{2}}{\sigma_{I_{\pi}}^{2} + \sigma_{I_{K}}^{2}}} + \frac{(T_{\pi} - T_{K})^{2}}{\sigma_{T_{\pi}}^{2} + \sigma_{T_{K}}^{2}}$$

where I_{π} (I_{K}) and $\sigma_{I_{\pi}}$ ($\sigma_{I_{K}}$) are the average dE/dx measurement of particle $\pi(K)$ and the corresponding resolution, T_{π} (T_{K}) and $\sigma_{T_{\pi}}$ ($\sigma_{T_{K}}$) are the average *TOF* measurement of particle $\pi(K)$ and the corresponding resolution.

In the ideal case assuming no degradation and σ_I and σ_T are in the range of [1 - 5%] and [10 - 80ps] respectively.

 $S_{\pi K}$ is estimated at the CEPC as a function of σ_I , σ_T , p and $\cos \theta$.

 $1-20 \text{ GeV} \\ \cos \theta = 0 - 1$

The average separation power $\langle S \rangle$ versus σ_I and σ_T after integrating over the $\cos \theta$ and momentum dimension.

$$\langle S_{\pi K}(\sigma_{I}, \sigma_{T}) \rangle = \frac{\int_{0}^{1} \int_{1}^{20} S_{\pi K}(\sigma_{I}, \sigma_{T}, p, \cos \theta) PDF(p, \cos \theta) dp \, d \cos \theta}{\int_{0}^{1} \int_{1}^{20} PDF(p, \cos \theta) dp \, d \cos \theta}$$
The integral form is rewritten into a summation form:
$$\langle S_{\pi K}(\sigma_{I}, \sigma_{T}) \rangle = \frac{\sum \sum S_{\pi K}(\sigma_{I}, \sigma_{T}, p_{i}, \cos \theta_{j}) PDF(p_{i}, \cos \theta_{j}) \Delta p \, \Delta \cos \theta}{\int_{0}^{1} \int_{1}^{20} PDF(p, \cos \theta) dp \, d \cos \theta}$$

 $1-5 \text{ GeV} \\ \cos \theta = 0 - 1$

5-10 GeV $\cos \theta = 0 - 1$

10-15 GeV $\cos \theta = 0 - 1$

 $15-20 \text{ GeV} \\ \cos \theta = 0 - 1$

Impact parameter for π, K, p

Impact parameter is defined as $\sqrt{\left(\frac{d_0}{\sigma_{d_0}}\right)^2 + \left(\frac{z_0}{\sigma_{z_0}}\right)^2}$

 d_0 is the distance between the nearest point (x_0, y_0, z_0) of the track on the $r - \varphi$ plane and the reference point IP. When $\underline{d} \times \underline{t}$ and z axis are in the same direction, the sign of d_0 is positive.

VTX and PID for reconstruction

Selection Process for $\Lambda \rightarrow p\pi$:

- 1. Pick two tracks with opposite charges.
- 2. Use truth information to get the track PID.
 - If track PID is lepton, then **end** the process.
 - If track PID is hadron, then use random number generator to mimic PID resolution.
- 3. If the two track PID after step 2 are p and π respectively, then fit the secondary (or tertiary vertex) with two tracks using least square method.
- 4. Select those which satisfy that χ^2 from the vertex fit has to be under certain threshold (<20).
- 5. Select those which satisfy certain constraints on mass error (<10 MeV). 4-momentum is computed using two tracks at the secondary vertex (or tertiary vertex).
- 6. If the gaussian distributions in this picture is too wide, then most tracks will be identified as π . Then we use the leftover tracks to perform the reconstruction again, this time without PID.

Made by ZHENG TF

The scaled spectra of $(I - I_K)/\sigma_I$ using dE/dx measurements alone for particles with a momentum of 5 GeV/c

Summary

To identify charged Kaon(hadrons) up to 20 GeV

- VXT: χ^2 , reconstructed parent mass and impact parament

$$\left(\frac{d_0}{\sigma_{d_0}}\right)^2 + \left(\frac{z_0}{\sigma_{z_0}}\right)^2$$

- PID: dE/dx and TOF

Preliminary:

- 3σ separation of $\pi - K$, corresponding to 3.2 % of dE/dx resolution and $50 \, ps$ TOF resolution, is appreciated.

Next:

- The impact parament will be used to optimize the reconstruction process

Check Validity

