

Optimization of Silicon Pixel Vertex Detector for CEPC

Hao Zeng, Joao Guimaraes Costa, Quan Ji, Jinyu Fu, Gang Li, Kewei Wu, Zhijun Liang, Mingyi Dong, April 16, 2021

Outline

- Introduction and Motivation
 - CEPC physics requirements
 - MOST2 indicators
 - CEPC vertex study overview
- Optimization study for CEPC vertex
 - Vertex layout
 - Long barrel vertex
 - Beam pipe
 - Optimal vertex layout
- Air cooling for vertex detector
- Summary & plan

CEPC physics requirements

- Jet flavor tagging is important for CEPC Higgs study, ~70% of Z, W, and H decay products are jets
- Jet flavor is determined with its vertex displacement and kinematics — jet sub-structure
- Silicon vertex detector is essential to measure the vertex displacement
 - an impact parameter resolution of about 5 µm is required

Physics process	Measurands	Detector subsystem	Performance requirement			
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$			
$H \to b \bar{b}/c \bar{c}/g g$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\begin{split} \sigma_{r\phi} &= \\ 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m}) \end{split}$			
$H ightarrow q ar q, W W^*, Z Z^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{{ m jet}}_E/E=$ 3 ~ 4% at 100 GeV			
$H\to\gamma\gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$			

 Table 3.3: Physics processes and key observables used as benchmarks for setting the requirements and the optimization of the CEPC detector.

MOST2 task and indicators

Ach<u>ievement Presentation</u> and Assessment Methods

See details: indico link

Task 2: build a silicon pixel detector prototype

Overview of Task 2:

- Can break down into sub-tasks:
 - CMOS imaging sensor chip R & D
 - Detector layout optimization, Ladder and vertex detector support structure R & D
 - Detector assembly
 - Data acquisition system R & D

CEPC vertex study overview

- CDR vertex:
 - based on ILD
 - ideal concept vertex(Z. Wu et al)
- Vertex prototype for MOST2:
 - realistic implementation of CDR vertex (barrel)
 - mechanics: ladder design, support structure, ladder arrangement (<u>indico link</u>)
 - electronics: chips, read-out
 - cooling: air cooling
- Realistic vertex detector for CEPC:
 - based on vertex prototype (mechanics, electronics)
 - full-size vertex detector (barrel + endcap)
 - beam pipe, MDI, cooling

Vertex layout optimization

- Base on the design of vertex prototype (mechanics, electronics), we try to optimize the full-size vertex detector (d0 resolution as criteria):
 - Barrel optimization
 - The radius of vertex detector
 - The number of layers
 - The radius of second layer
 - Lengthen the innermost layer
 - Disk optimization
 - The number of disks
 - Single-disk or double-disk
 - The putting place of the disk
 - 3 double-disks in endcap is the best

Layout with 3 equidistance double layers is best Z. Drasal, W. Riegler

improve the d0 resolution in front region

- ➢ Full silicon tracker as outer tracker: FST
- Not consider cable & cooling for the transition region between barrel and endcap

All layout tuning results simulated by tkLayout, which was developed by CMS, customized for CEPC tracker fast Joint Workshop of the CEPC Physics, Softwirmellation(on-going). More information in <u>github</u>. 6

Detector Concept (April 16, 2021)

Long barrel vertex

Beam pipe study overview

- Beam pipe radius
 - Big effect on low momentum track
 - Beam pipe radius is smaller, resolution is better
 - Improve d0 resolution 21% if reduce beam pipe radius to 10 mm
- Beam pipe material

4 layers

- Beam pipe structure:
 - innermost Au: T=5 um
 - inner Beryllium layer: T= 0.5 mm
 - gap: T=0.5 mm (coolant)
 - outer Beryllium layer: T= 0.35 mm
- 24% worse if use paraffin coolant +Au
- might cancel the material effect if reduce beam pipe radius to 10mm

8

New beam pipe with diameter of 20 mm

Detailed structure of the central beryllium pipe

Optimal vertex layout

 \succ more disks

Ionger innermost layer

Joint Workshop of the CEPC Physics, Software and New Detector Concept (April 16, 2021)

Vertex design considering air cooling

Summary & Plan

- Considering the mechanics, electronics and the beampipe, we got an optimal vertex layout which contains three double-layers in the barrel and three double-disks in the endcap.
- The d0 resolution of this optimal vertex is much better than the realistic implementation of CDR vertex and realistic long barrel vertex (20% and even more).
- Next:
 - Air cooling for this optimal vertex layout
 - thermal simulation,
 - vibration studies
 - Implement this layout using Geant4 full simulation
 - Global tracker consideration, overall mechanics of the CEPC

Backup

Realistic long barrel vertex

Radiation Lengths[x/X

- CEPC
- The material budget of realistic long barrel vertex is about twice as much as the ideal long barrel vertex.
- Much more material in the front region than optimal vertex layout.

Optimization thickness of beryllium pipe

Relationship table between diameter, thickness and pressure: ($\Phi 63mm$)

BESIII(63)	inner <i>Be</i> pipe	R1(inner radius)	thickness	Gap	R2(outer radius)	R	E(GPa)	μ	Pcr(MPa)	
		31.5	0.8	0.8	32.3	31.9	303	0.1	1.2068	
	outer <i>Be</i> pipe		δe	Di			[σ] ^t	Φ		Pw(MPa)
		33.1	0.6	66.2	33.7		110	1		1.9760

Relationship table between diameter, thickness and pressure: (Φ 28mm)

	inner Pe nine	R1(inner radius)	thickness	Gap	R2(outer radius)	R	E(GPa)	μ	Pcr(MPa)	
CEPC(28)	inner <i>be</i> pipe	14	0.35	0.5	14.35	14.175	303	0.1	1.1518	
(safety)	outor Ro pipo		δe	Di			$[\sigma]^t$	Φ		Pw(MPa)
	outer <i>be</i> pipe	14.85	0.25	29.7	15.1		110	1		1.8364
	inner <i>Be</i> pipe	R1(inner radius)	thickness	Gap	R2(outer radius)	R	E(GPa)	μ	Pcr(MPa)	
CEPC(28)		14	0.3	0.5	14.3	14.15	303	0.1	0.7292	
(Performance)) outer Be pipe		δe	Di			[σ] ^t	Φ		Pw(MPa)
		14.8	0.2	29.6	15		110	1		1.4765

Relationship table between diameter, thickness and pressure: (Φ 20mm)

	inner Re nine	R1(inner radius)	thickness	Gap	R2(outer radius)	R	E(GPa)	μ	Pcr(MPa)	
CEPC(20)	inner <i>be</i> pipe	10	0.25	0.5	10.25	10.125	303	0.1	1.1518	
(safety)	Al pipe	10	0.5		10.5	10.25	68.2	0.32	2.2049	
	outer <i>Be</i> pipe		δе	Di			$[\sigma]^t$	Φ		Pw(MPa)
		10.75	0.2	21.5	10.95		110	1		2.0276
	inner Pe nine	R1(inner radius)	thickness	Gap	R2(outer radius)	R	E(GPa)	μ	Pcr(MPa)	
CEPC(20)	ппег ве ріре	10	0.2	0.5	10.2	10.1	303	0.1	0.5941	
(Performance)	Al pipe	10	0.5		10.5	10.25	68.2	0.32	2.2049	
	outer Be pipe		δe	Di			$[\sigma]^t$	Φ		Pw(MPa)
		10.7	0.15	21.4	10.85		110	1		1.5313

The optimization results show: Under the same flow channel pressure, The smaller the diameter, the smaller the thickness

In the choice of thickness, we have two options

 Safety first inner diameter Φ28mm
 Thickness of outer Be pipe: 0.35 mm
 Thickness of inner Be pipe: 0.25 mm

inner diameter **Φ20mm**

Thickness of outer Be pipe: 0.25 mm Thickness of inner Be pipe: 0.20 mm

• performance first

Thinner (As shown in the left table)

δ d_o [μm]

18

- > Using 7 ladders for the innermost layer improves d0 resolution a lot at $\cos\theta=0$.
- For mechanical consideration, I prefer placing second layer in the middle.

dxy vs cos0 (p=50GeV)

7 chips on both sides for innermost layer and second layer in the middle is better.

- 7-ladders arrangement is better than 8-ladders arrangement.
 - less material
 - ➢ 7 ladders are close to beam pipe.

Detector Concept (April 16, 2021)

Joint Workshop of the CEPC Physics, Software and New Detector Concept (April 16, 2021)

Comparison of different ladder arrangements for innermost layer

Joint Workshop of the CEPC Physics, Software and New Detector Concept (April 16, 2021)

d0 resolution of optimal vertex layout

Joint Workshop of the CEPC Physics, Software and New Detector Concept (April 16, 2021)

New long barrel

vertex_v2 performance

Joint Workshop of the CEPC Physics, Software and New Detector Concept (April 16, 2021)

Ladder of realistic long barrel vertex

detector layers 5-6: width 16.8 mm, high 4 mm

surface thickness: 0.25

inside ribs thickness : 0.6 number: 2 intotal

Carbon fiber support:

detector layers 3-4: width 16.8 mm, high 3 mm surface thickness: 0.2

inside ribs thickness : 0.6 number: 2 intotal