Reconstruction of tau using TAURUS on CEPC

Speaker: Chuyi Kong Achknowlodgement: Manqi Ruan Young Scientist Forum, YangZhou, 2021.4.16

Motivation

Introduction of TAURUS

Software and samples

Implementation on different channels

Conslusion

Why tau finding?

- Channels containing tau could be a sensitive probe to new physics.
- Example:

 $H \rightarrow \tau \tau$, τ plays a crucial role in searching SM Higgs bosons.

WW $\rightarrow \tau v q q$, τ reconstruction is necessary for the measurement of Higgs total width using WW mode.

 τ also presents in various B meson decay channels, B_c mesons for instance provides opportunity to discover dark matter candidates

• In CEPC, a good performance is expected.

Algorithm of TAURUS

- Double-cone based algorithm
- Sensitive parameter: Outer cone & Inner cone
- Parameter settings are optimized along with energy for different physics process

Implementation

Channel	$H \rightarrow \tau \tau$	WW → τυqq	$B_{C} \rightarrow \tau v$	$B_S \rightarrow \tau \tau$
Event Number	18000	19000	17400	19500

- Detector model: CEPC baseline detector
- The reconstruction starts from ArborPFO final state particles.(Hadronic decay: $\pi^+, \pi^-, \pi^0 \rightarrow \gamma \gamma$ Leptonic decay: e, μ)
- Tau is tagged with visible energy and momentum reconstructed. The information can be used for further analyses.

Higgs Channel-Event Display

• Efficiency:

• Purity:

Number of tagged truth tau Number of truth tau Number of tagged truth tau Number of tagged tau

Success

• Efficiency=1,Purity=1

Failure-Misidentification

• Efficiency=1,Purity=0.5

Failure-Loss

• Efficiency=0.5,Purity=1 ⁶

Higgs Channel-Event Display

Higgs Channel-Performance

- Overall efficiency/purity: 0.80/0.86
- Performance over energy: Parameters are optimized to reach a maximum Efficiency × Purity
- Performance over polar angle: Fixed parameters are used, to be optimized in future

Higgs Channel-Resolution

- Overall energy resolution: 0.09. Performance limited in low energy range
- Overall polar angle resolution: 0.01 Performance limited in endcap region
- Energy and polar angle are sliced into equal intervals, $\delta E/E$ and $\delta \theta$ is the 1-sigma peak width of each interval.

WW $\rightarrow \tau \nu q q$ -Event Display

• Efficiency:

Purity:

٠

- Number of tagged MC particles Number of MC particles Number of tagged MC particles
- Number of tagged particles

Success

• Efficiency=1,Purity=1

- Failure-Misidentification
- Efficiency=1,Purity=0.5

Failure-Loss

• Efficiency=0,Purity=0 ¹⁰

WW $\rightarrow \tau \nu q q$ -Event Display

WW $\rightarrow \tau \nu q q$ -Performance

- Overall efficiency: 0.79
- Overall purity: 0.85

WW Channel-Resolution

- Overall energy resolution: 0.14
- Overall polar angle resolution: 0.01
- Limited performance in low energy range and endcap section

$B_{\mbox{\scriptsize C}}$ Channel-Event Display

• Efficiency:

Purity:

٠

- Number of tagged MC particles
- Number of tagged MC particles Number of tagged particles

• Efficiency=1,Purity=1

Failure-Misidentification

• Efficiency=1,Purity=0.5

• Efficiency=0,Purity=0

B_c Channel-Event Display

B_c Channel-Performance

- Overall efficiency: 0.57
- Overall purity: 0.67
- Impact parameter cut is used for optimization, IP>1.3 $IP = log((D_0/\sigma_{D_0})^2 + (Z_0/\sigma_{Z_0})^2)$
- Drastic drop of purity below 5 GeV

$B_{\mbox{\scriptsize C}}$ Channel-Resolution

- Overall energy resolution: 0.31
- Overall angle resolution: 0.07

B_S Channel-Event Display

• Efficiency:

Purity:

٠

- y: <u>Number of tagged MC particles</u> Number of MC particles
 - Number of tagged MC particles Number of tagged particles

Successful event with exactly two tau leptons tagged&matched is rare.

Failure-Misidentification

• Efficiency=1,Purity=0.667

Failure-Loss+Misidentification

• Efficiency=0.5,Purity=0.143⁸

B_s Channel-Event Display

B_s Channel-Performance

• Overall purity: 0.18

$B_{\boldsymbol{S}}$ Channel-Resolution

- Overall energy resolution: 0.43
- Polar angle resolution: 1.11
- Double cone based algorithm is not suitable for Bs channel

	Higgs(isolated)	WW(isolated)	Bc(jet)	Bs(jet)
Efficiency	0.80	0.79	0.57	0.55
Purity	0.86	0.85	0.67	0.18
Energy Resolution	0.09	0.14	0.31	/
Polar Angle Resolution	0.01	0.01	0.07	/

Work for future:

Develop an optimized parameter set for performance over polar angle.

PID information of charged particles could be of use for tau of hadronic decay mode

For tau leptons in jets:

Reconstruction of tau leptons of low energy.(Bc)

Reconstruction of tau pairs close to each other.(Bs)

Thank you for the listening!

Backup

Deviation distribution

Matching Condition

$$DE = \frac{|E_{MC} - E_{Reco}|}{E_{MC} + E_{Reco}}, DR = \arccos \frac{\vec{P_{MC} \cdot P_{Reco}}}{\left|\vec{P_{MC}}\right| \left|\vec{P_{Reco}}\right|}$$

	Higgs Channel	WW Channel	Bc Channel	Bs Channel
Maximum DE	0.2	0.2	0.2	0.2
Maximum DR	0.1	0.1	0.1	0.1

A stricter matching condition is adopted (In comparison with DE<0.8&&DR<0.5 in the plots of previous talks) for optimization.

Optimization, Higgs channel as example

- Parameters sensitive to visible energy: Outer/Inner cone value
- Evaluation: maximal efficiency × purity
- Impact parameter cut is also used to ameliorate the purity.

$B_{\mbox{\scriptsize C}}$ Channel- Resolution, no IP cut

• Without impact parameter cut, the resolution become worse especially for polar angle.

Factors of endcap drop

• The performance on generator is flat line, indicating that ArborPFO performance in endcap region limits TAURUS performance.

