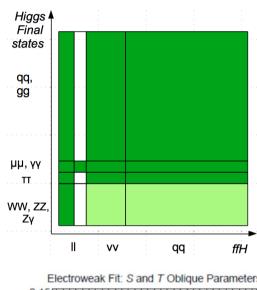
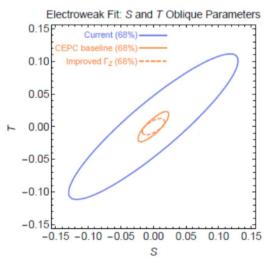
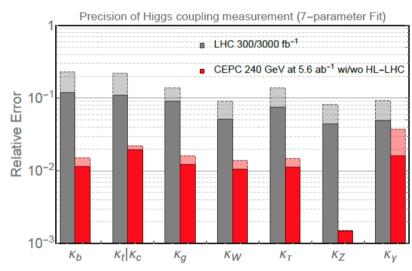


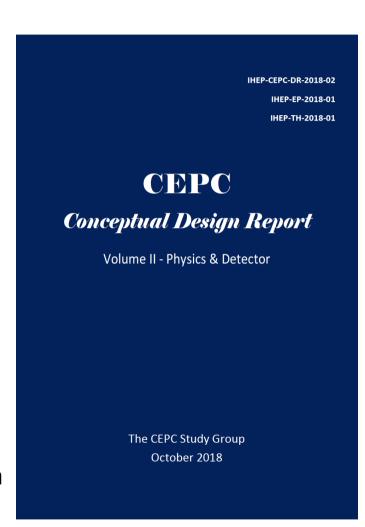
CEPC: a boson & top factory


operation mode	Z factory	WW threshold	Higgs factory
$\sqrt{s}/{ m GeV}$	91.2	160	240
run time/y	2	1	7
instantaneous luminosity/ $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	16–32	10	3
integrated luminosity/(ab ⁻¹)	8–16	2.6	5.6
Higgs boson yield	_	_	10^6
W boson yield	_	10^7	10^8
Z boson yield	$10^{11} - 10^{12}$	10 ⁸	108


- Possible upgrade: 2 inv(ab) @ 360 GeV ~ 1 Million top quark, + 300 k Higgs
- State-of-Art detector + reconstruction: identify & characterize all those clean events...


Physics White Papers

- Demonstrate & quantize the physics potential
 - On various frontiers: Higgs, EW, QCD, Flavor & BSM
 - Official references
 - Handbook
- Maximize the scientific output, by quantify
 - The comparative advantages/synergies V.S. other facilities
 - The critical Luminosity & Detector performance
 - Identify/promote possible upgrading plan
- Promote the project & attract collaborations


Physics @ CDR: starting point

Discussed also the Flavor & QCD Programs without dedicated simulation Studies at that time...

75 registrant + several visitors; ~ 50 talks. Covers Physics, Pheno, and Performance studies Multiple Benchmarks are proposed, related performance/analysis are presented Supported by IHEP CFHEP & PKU

High Energy Physics

January 6-24, 2020

Conference Week (Jan 20-23, 2020)

CEPC @ Snowmass

武雷 (..

lovecho

title	ID	author	link
Study of electroweak phase transition in exotic Higgs decays with CEPC Detector simulation	229-v1	Michael Ramsey-Musolf	URL
Exclusive Z decays	226-v1	Qin Qin	URL
Measurement of the leptonic effective weak mixing angle at CEPC	233-v1	Siqi Yang	URL
Heavy Neutrino search in Lepton-Rich Higgs Boson Rare Decays	244-v1	Yu Gao	URL
Higgs boson CP properties at CEPC	227-v1	Xin Shi	URL
Measurement of branching fractions of Higgs hadronic decays	228-v1	Yanping Huang	URL
Feasibility study of CP-violating Phase phi_s measurement via Bs->J/PsiPhi channel at CEPC	230-v1	Mingrui Zhao	<u>URL</u>
Probing top quark FCNC couplings tqr, tqZ at future e+e- collider	231-v1	Peiwen Wu	URL
Searching for $B_s o \phi u u$ and other b->dvv processes at CEPC	232-v1	Yanyun Duan	URL
Probing new physics with the measurements of e+e> W+W- at CEPC with optimal observables	234-v1	Jiayin Gu	<u>URL</u>
NNLO electroweak correction to Higgs and Z associated production at future Higgs factory	235-v1	Zhao Li	URL
SUSY global fits with future colliders using GAMBIT	237-v1	Peter Athron	URL
Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC	238-v1	Waqas Ahmed	URL
Search for t + j + MET signals from dark matter models at future e+e- collider	239-v1	Peiwen Wu	URL
Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets	240-v1	Mengchao Zhang	<u>URL</u>
Dark Matter via Higgs portal at CEPC	241-v1	Tianjun Li	URL
Lepton portal dark matter, gravitational waves and collider phenomenology	242-v1	Jia Liu	URL
CEPC Detectors Letter of Intent	245-v1	Jianchun Wang	URL

Higgs: white paper delivered

IHEP-CEPC-DR-2018-02 IHEP-EP-2018-01 IHEP-TH-2018-01

CEPC Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group October 2018 Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC*

Fenfen An(安芬芬)^{4,23} Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa ⁴ Zhenwei Cui(崔振崴) ³ Yaquan Fang(方亚泉) ^{4,6,34;1)} Chengdong Fu(付成栋) ⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶锋)^{15,29} Jiayin Gu(顾嘉荫)^{13;2)} Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩涛)^{5,31} Shuang Han(韩爽)⁴ Hongjian He(何红建)^{11,10} Xianke He(何显柯)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹⁰ Shih-Chieh Hsu(徐士杰)³² Shan Jin(金山)⁸ Maoqiang Jing(荆茂强)^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖培筑)²¹ Boyang Li(李博扬)⁵ Congqiao Li(李聪乔)³ Gang Li(李刚)^{4,34;3)} Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李数)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(梁浩)^{4,6} Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘涛)¹⁴ Zhen Liu(刘真)^{26,30,4)} Xinchou Lou(娄辛丑)^{4,6,33,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic¹⁶ Jianming Qian(钱剑明)^{24,5)} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis²² Manqi Ruan(阮曼奇)^{4,6)} Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王锦)⁴ Liantao Wang(王连涛)^{27,7)} Yifang Wang(王贻芳)^{4,6} Yuqian Wei(魏彧骞)⁴ Yue Xu(许悅)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6;8)} Zhaoru Zhang(张照茹)⁴ Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

¹Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China

²China Institute of Atomic Energy, Beijing 102413, China

³School of Physics, Peking University, Beijing 100871, China

⁴Institute of High Energy Physics, Beijing 100049, China

Higgs: significant progress

- 13 (Parallel session) + 1 (Young Scientist Forum) talks
- Run at top thresholds:
 - 240 + 360 GeV, boost the precision of Higgs width measurement by a factor of 2... with respect to 240 GeV Higgs Runs.

- ...

- Differential measurements
- New analysis technologies
- New interpretations...
- A major update?

Flavor

Flavor Physics at CEPC

- Extremely rich Physics... with access to High Energy Physics principles...
- Different detector performance requirements w.r.t. the Higgs/EW
- Very strong competition from dedicated flavor physics facilities: LHCb & Belle II, etc

 Kick off at PKU meeting, and part of the white paper is converged

Benchmark studies are processed in past ~2 year

Working Group and Conveners

Chapter One: Introduction

Conveners: Marek Karliner, Luciano Maiani,

Jonathan Rosner, Abner Soffer, Lian-Tao Wang

Chapter Two: Leptonic and semileptonic b-hadron decays

Conveners: Sebastien Descotes-Genon , Jeorme Charles, Abner Soffer, Florian Bernlochner, Bob Kowalewski

Chapter Three: b-hadronic decays and CP violation

Conveners: I.I. Bigi, Chao-Qiang Geng, Abner Soffer,

Yue-Hong Xie

Chapter Four: Rare and forbidden b-hadron decays

Conveners: Wolfgang Altmannshofer, Soeren A. Prell,

Emmanuel Stamou

Chapter Five: Charm physics

Conveners: Chun-Hui Chen, Hai-Yang Cheng,

Marek Karliner, Jonathan Rosner

Chapter Six: Exotic hadron and Spectroscopy with heavy flavors

Conveners: Marek Karliner, Luciano Maiani,

Jonathan Rosner, Wei Wang

Chapter Seven: τ Physics

Conveners: Emilie Passemar, Emmanuel Stamou,

Lorenzo Calibbi

Chapter Eight: Flavor physics in Z decays

Conveners: Wolfgang Altmannshofer, Lorenzo Calibbi

Chapter Nine: Two photon and ISR physics with heavy flavors

Conveners: Igor R. Boyko, Vladimir V. Bytiev,

Alexev S. Zhemchugov, Lian-Tao Wang

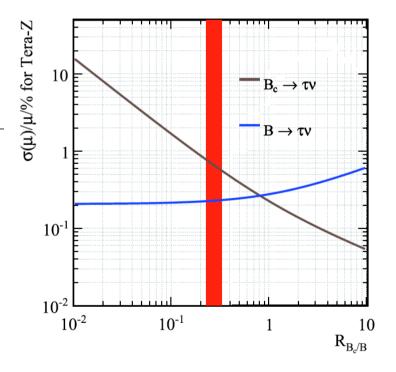
Chapter Ten: Summary and Conclusion

Conveners: Lorenzo Calibbi, Hai-Bo Li, Manqi Ruan,

Abner Soffer, Jian-Chun Wang

味物理本身是极为丰富的,而不同的味物理实验设施各有特色,具有明显的比较优势。因此,标志性测量的适当选取,是明确 Higgs/Z 工厂在味物理上的物理目标、量化其物理潜力、明确其比较优势,进而量化探测器需求的前提条件。这是 Higgs/Z 粒子工厂实验设计的重要前提和不可或缺的研究,可以说没有这些

Flavor


- 4 benchmarks at Full simulation + multiple performance studies: 6 + 4 talks
 - Bc->tauv Published, deeply linked with R_K puzzle
 - Bs->J/psi+Phi, CP measurement, see Mingrui's talk
 - Bs->Phi + vv, see Yudong's talk
 - Bs/B0->2pi0, see Yuexin's talk

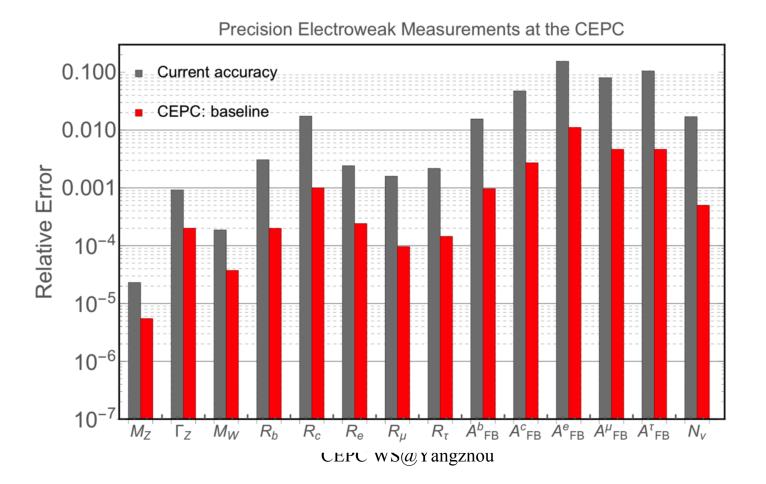
Chinese Physics C Vol. 45, No. 2 (2021)

Analysis of $B_c \to \tau v_{\tau}$ at CEPC*

Taifan Zheng(郑太范)¹ Ji Xu(徐吉)² Lu Cao(曹璐)³ Dan Yu(于丹)⁴ Wei Wang(王伟)² Soeren Prell⁵ Yeuk-Kwan E. Cheung(张若筠)¹ Manqi Ruan(阮曼奇)^{4†}

¹School of Physics, Nanjing University, Nanjing 210023, China
²INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
³Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
⁴Institute of High Energy Physics, Beijing 100049, China
⁵Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Flavor


- Good understanding of all(?) key physics objects
 - Pi0: see Yuexin's talk, eff*purity > 60%, especially for high energy ones
 - Lepton & Tau: isolated, in jets, see Kongyi's talk
 - Pi/kaon separation, see Zhiyang's talk ~ need 3-sigma pi-kaon separation
 - ECAL resolution, see Yong/Yuexin's talk
 - Tracking precision: delta(p)/p ~ o(0.1%)
 - Flavor tagging: eff*purity ~ 70% for b-jet, 40% for c-jet @ Z->qq, see Gang's talk
 - Jet Charge: eff*(1-2*omega) ~ 14%/30% for b/c-jet, see Hanhua's talk
- Is it sufficient? More benchmark and/or fast estimation?
- Goal luminosity & Performance, on the context of a circular collider?

BSM: 11 talks

- CEPC is not only a precision machine!
- Quantify its discover power is essential
 - SUSY
 - 2HDM
 - EWPT
 - Dark Portal
 - Heavy Neutrinos...
 - ...
- A BSM white paper is definitely needed
- Content & Global interpretations?

EW

- Systematic uncertainties: major limitation
- Significant Progress on physics benchmarks, NNLO calculations, etc
- 9 talks: physics analyses, interpretations, and interactions with Snowmass team

QCD

- QCD
 - Theoretical uncertainties... Impact on other physics measurements...
 - alpha_s measurements...
 - Modeling of hadronisation...
 - Generators (see Jun & Renat's talk)...
- For Both EW & QCD: Common difficult questions for all electron positron Higgs factories.
 - How can we benefit from & make synergies with other Higgs factory studies?

Hope you enjoy the physics at CEPC

concerning the above mentioned questions... let's discuss during this WS – especially at the discussion session on April 17th!