

Outline

Constraints on Bhabha detection
 CEPC boosted Bhabha cross section, ~ 50 nb for θ > 30 mRad
 Realistic beampipe (IP 28 mm – 40 mm crutch – dual 20 mm)
 Iow mass window at Y-crutch, vertically θ : 12 – 25 mRad

GEANT on multiple scattering

- Inner det. before Flange: θ > 38 mRad
 Si layers surrounding beampipe,
 Si layers in front of Flange
- LumiCal behind Flange on Q-pole magnet
 Si layers on LYSO crystal, Y-axis θ > 12 mRad

Front-End chip R&D

wave-form sampling + flash ADC for fast trigger rate, 32 ns bunch crossing

Luminosity measurement

- Cross section of a reaction: $N = \sigma \cdot \int L \quad Z$ -lineshape dominant: $e^+e^- \rightarrow Z \rightarrow q\bar{q}$
- Luminosity L:

Bhabha

by measuring **Bhabha** elastics scattering a^+a^-

 $e^+e^- \rightarrow e^+e^-$

- QED process, theoretical < 0.1% precision
- triggering on a pair of back-to-back e⁺e⁻

Luminosity, precision on Bhabha

- Spatial resolution as sharp as possible
- Describe the reso./MS shape, δ<θ_{min}> to 0.3 mRad

Bhabha at CEPC

- **1.Beam crossing, 33 mRad**, e⁺ e⁻ boosted off ring center Fiducial cross section

 BHLUMI calculation
- 2.Al beam-pipe ~ 0.3 X_o, causing multiple scattering (MS) Detector location and MS effect -> GEANT simulation

Bhabha at detector plane Z=1m

Bhabha cross-section

(2020.04 report)

BHLUMI calculation

- round beam pipe, r = 30 mRad
- e⁺ e⁻ boosted for 33mRad crossing back-to-back symmetric to out-going beam center (x,y) = (16.5, 0 mm) at z = ±1000 mm

50 GeV beam, both e⁺ e[−] detected In fiducial range of

ϑ range = 30 – 80 mRad

Bhabha cross section > 50 nb

BHLUMI, 50 GeV Bhabha boosted for 33 mRad crossing				
CMS 10 ~ 80 mRad		LAB detect both electrons		
BARE1		off beampipe off beampip		
		full phi coverage	cut off \pm 30 mm	
Nevents 457232		29194	19216	
Xsec (nb)	1168.3	74.60 nb	49.10 nb	

Beam-pipe reality

- 5.5 Preliminary design of lumical
- Detection Angle range: 38~80mrad

mrad

30

- > On the detection path, as little mass as possible
- The structure of lumical is not yet determined, so the support and cooling structure should be further optimized and improved.

Workshop_20200828_Dongguan东莞

Al pipe x = 200 - 700 mm, inner 0.5mm, outer 0.35 mm thick Inner diameter @Z=200 φ = 28 mm Inner diameter @Z=675 **φ = 40 mm →** atan = **29.6 mRad** *Flange z=675~700, dia.=40 mm flat* Corner of **38 mRad** @ Z=(700-25) mm Radius = (700-25)*tan(.038) r= 25.66 mm

GEANT: Multiple scattering in Al pipe

Si wafer attacked tightly Ο

- Scintillator layer surrounding Al pipe 0
- observe Multiple-Scattering within Al pipe, Δz in Al-pipe: 20 – 40 mm

Z=0~115 mm

2020 LumiCal geom

Multiple scattering off Al beampipe

- 50 GeV electron traversing Al-pipe (mm): 0.5 Al 0.5 Air 0.35 Air
 @ fixed theta, phi=0°
- o *Multiple scattering deviation* simulated for ϕ =28 mm
 - 1. exiting Al-pipe (a Scintillator layer on surface)
 - 2. no air-gap, Si-layer attached

50 GeV (θ,φ)	σ (Z)	σ(θ)	1/tan(θ)
e (40 mR <i>,</i> 0º)	86 µm	8.9 μRad	25.0
e (55 mR <i>,</i> 0º)	37 µm	7.3 μRad	18.2
e (60 mR, 0º)	28 µm	6.5 μRad	16.6
e (70 mR, 0º)	19 µm	5.8 μRad	14.3

 θ to z: r/z =tan θ

1

LumiCal components

\circ Inner Detector volume before Flange

- 1. Si-layer surrounding beampipe
- 2. r-φ Si-disk on Flange

\odot Calorimeter before Q-pole magnet

1. r-φ Si-disk on Calo surface

pin

Si-ladder

2. LYSO for compactness

Realistic beampipe, GEANT (2021)

 $\circ\,$ Tilt the Al pipe from φ =28 mm to φ =40 mm thickness (mm): 0.5 Al – 0.5 Air – 0.35 Air

- Si wafer parallel to z-axis r_{min}=22mm
- →air gap to Al-pipe, large Multiple Scattering

poor design !

409 TbFe 5mm Fe Z=0~ 970 mm connecting to r= 12.34cm ~+.5cm, FE	TbOS 2mm scin Z=0~ 970 mm r= 12.39cm +.2cm TbOS 2mm scin Z=0~ 111cm r= 15.7cm +.2cm	Acos(.99) = .14154 rad Acos(.992) = .1266 rad atan(123.6/970) = .12678 rad	FgFe Flange 25mm Z=675- 700mm avor.= 112~150 mm
409 TbFe 5mm Fe r= 15.2 cm ~+.5 z=0~118cm Edge 15/118=tan(.1266) Z=200 mm	TblS 2mm scin Z=0~ 111m r= 15cm +.2cm TblS 2mm scin Z=0~ 970 mm r= 12.32cm +.2cm BpSn Si octagon rmin =1.5451 cm Z=16 - 52.0 cm R2Sn Si octagon rmin =4.4 cm 128~66 R1Sn Si octagon rmin =2.2 cm 64~33 m Z=34.0- 66.0 cm 32long.25x1.28 OuSc r=15.5,21.5mm +0.5mm Scintill	Fing 10mm thick flange R = 15.5-70. mr Z=520~530 mm 22.3-100.2 mra r= 55~123.2 mm Acos(+992) Fwin window 2 mr≅.1266 rad Deck=3.5m mRad20~522 R = 22-112. nRad3up~55 mm 100 mrad 33.1-16 428 FLSi Si deck @ Z= 664r Z=522~524 R = 15.5-55 mm ator 29.7.105 mrad	n dezenso wo layers mW#2mmAir mm i7.1 mrad nm
15 r 14	mm Air gap =0.5cm 0uAl outer Al pipe	Z=520 mm	FgAl Flange 25mm Z=675- 700mm r= 20.~112. mm
401 InBPipe full +-200 mm p9 InBP Inner Be pipe Z=0~200 mm, inner diameter 28 mm 0.5mm thick	Z=200~675 mm @200 r=28/2+1 mm, 0.5mm thick @675 r=40/2+1 mm, 0.5mm thick k InAl Inner Cu pipe @200 inner r=28/2 mm 0.5mm thi	Fpip flange pipe 1.5 mm thick Z= 522-716 mm at Z=512 r= 14 – 15.5 mm	Fend Flange 20mm Z=696 - 716 r= 15.5~123.2 mm
OuBP outer Be pipe Z=0~200 mm inner radius 28/2+1 mm 0.35mm t	@675 inner r=40/2 mm		

11

Multiple Scattering on Si ring

- ο Al-pipe tilt 12.6 mRad (φ28 to 40 mm)
- Si-layer (r=22mm) parallel to z-axis → air-gap from IP ~ 100 mm
- ➔ multiple scattering effect is magnified !!

Compare MS on Al-pipe surface (Scin layer) and on Octagon Si layer, *primary track*

(θ,φ)	σ (Z) Scin	σ(θ) Scin	σ(Ζ) Si ^{1st}	σ(θ) Si ^{1st}	1/tan(θ-Δ)
e (40 mR <i>,</i> 0º)	153 µm	13.6 µRad	458 μm	35 μRad	36.5
e (55 mR, 0º)	54 µm	10.1 µRad	287 µm	40 µRad	23.6
e (60 mR <i>,</i> 0º)	44 µm	9.7 μRad	251 µm	40 µRad	21.1
e (70 mR, 0º)	22µm	7.0 μRad	_	-	17.4

GEANT behind the Flange RUN EVENT the *duckbill/y-crotch* φ=40 to dual 20 mm pipes is *a low-mass, high cross section* window for Bhabha Q= atan(10/50) =.1974 =11.31 deg MDI 2020.12.23 IDCI 4mm 50mm 9.806mm 10mm 20.4mm 2mm 5.2n 40mm mm 53mm 750 NR NR RUN EVENT 1110 10mm Slab 2mm thick 51mm Pipe Inner surface ends r=20mm, 10mm 10mm 51mm Slab inner pipe surface TPC cone 50mm Beam Duckbill 10mm 40mm BDBL, BDBR, BDBU, BDBD 2 cm -855mm Thick=2mm Al Slab center: 25mm, -16mm Tube r=20 to dual tube r10 axis rotate 11.31 deg Lba LySi z=90-110 z=900-mm Si wafer 12mm R=20~10mr R=14mm InAl R=20mm R=20mm Z=200mr Z=675mm Z=700mm OuAl InBP **BPAI** Tube OuBP r=20 mm z=700-805mm 409 TbFe 5mm Fe Tbls TbOs 2mm Scin Thick=2mm 2 cm nm xc=12mm Thick=2mm Al FgFe z=0~111cm Edge 15/118=tan(.1266) @cosQ=.992 e to dual tube FgAl 13

Duckbill/y-crotch window for Bhabha

- Window on lab y-axis: $\theta = 12 25$ mRad Bhabha cross section in clean phi region γ 100 mb
- Electron θ measured by Si r-φ disk before LYSO

Bhabha in duckbill window

Bhabha symmetric to out-going beam center

(x,y) = (16.5, 0) @ z = 1000 mm

- High cross-section, low mass region:
 phi ~ 60° to 120° to beam center
- O Bhabha acceptance: both e⁺ e⁻ detected
 Lab frame @ z = 1000 mm

dual beampipe: r = 10 mm

- y-axis: |y|>10 mm,
- **X-AXIS:** (± 43 mRad to out-going beam center)
 - $\theta(e^+) > 26.5 \text{ mRad}$
 - $\theta(e^{-}) > 59.5 \text{ mRad}$

Duckbill/y-crotch window, low mass

• Duckbill can be *Aluminum*, instead of Copper ?

• **No** other object below $\phi = 40 \text{ mm}$?

Ţ	ver2020062	8 d28-d40-	-d20叉管前	「移真空说『	归
距₽距离	内壁尺寸 (mm)	材料	备注		
1-120	直径28	Be			
120-205	直径28	A 1			
205-655	直径28过 渡到直径 40	A 1	taperl 75	探测器部 分	
655-670	直径40	A 1			(
670-750	直径40	Cu	远程连接 装置预留		_
750-820	直径40过 渡到20- 47.1跑道 型。水平 方向40- 47.1,垂 直方向 40-20	Cu	水平方向 taper1:19. 7 垂直方向 taper1:7	加速器部 分	
820-855	分叉,分 别从半跑 道型过渡 到直径20	Cu	水平方向 taperl:11. 7		
855-1110	直径20	Cu	BPM 预留 空间		

LumiCal spatial resolution

O Octagon Si-layer surrounding beampipe
O Flange Si-disk (1X0 + Si disk)
O Calo Si-disk, front of LYSO

LumiCal spatial resolution

50 GeV electron, all hits on Si wafers (primary e⁻ and secondaries)

- 1. Scan vertically phi = 90° through Duckbill window
- 2. Scan horizontally phi = 180° thick mass add 0/1 X0 between Flange Si layers
- 3. Multiple scattering observed
 - @ Octagon surrounding Al-pipe@ Flange Si-disk
 - @ LYSO front Si-disk

Lab (θ,φ)	σ(z) Oct Si	σ(x) Flg Si	σ (x) LySi
e (15 mR <i>,</i> 90º)	-	-	4.8 μm
e (20 mR, 90º)	-	-	6.3 μm
e (25 mR, 90º)	-	-	9.8 µm
e (30 mR <i>,</i> 90º)	-	-	95 µm
e (40 mR, 90º)	620 µm	52 µm	129 µm
e (55 mR, 90º)	373 μm	58 µm	114 µm
e (60 mR, 90°)	308 µm	65 µm	111 μm

(θ,φ)	σ (z) Oct Si	σ (x) Flg Si XO Si	σ (x) LySi 0/1 X0
e (30 mR, 180º)	_	_	<mark>106</mark> /107 μm
e (40 mR, 180°)	653 μm	50, 51 μm	<mark>168</mark> /288 μm
e (55 mR, 180º)	375 μm	61, 60 μm	<mark>146</mark> /265 μm
e (60 mR, 180º)	307 µm	56, 57 μm	<mark>155</mark> /256 μm

Front-end for LumiCal

CEPC bunch crossing : 32 ns

N= 10³⁴/cm²s x 100 nb (Bhabha) = 10³⁸/m²s x100 x10⁻⁹ x10⁻²⁸ m² = 10³/sec

Low θ Bhabha event rate @ instant L = 10³⁴/cm²s ~ **1k Hz** Readout for LumiCal aims for : 30 ns/event

Viking type FE, outstanding S/N Long shaping time, VA ~2 μm (IHEP has a version), APV25 ~100 ns Analog output, long readout chain, requires repeater near by

Telescope with IHEP Viking (new chips in this summer) plan to build a testbeam system to study Si-wafer charge

Readout chip for LumiCal

Proposal for a fast sampling chip for Si-wafer and SiPM Compact FE for LumiCal

proposal with SMU on ASIC design: a signal sampler, and a FADC signal simpling @ 500 MHz \rightarrow FADC output (Optical link) \rightarrow FPGA event selection

Lab study with commercial boards

experience with SiPM signal with LYSO crystal, Sc137 source, testbeam, etc commercial FADC and feedback to ASIC design

Summary

• Explore Duckbill/y-crotch window for Bhabha

low mass, high cross section

- **Q:** before $\phi = 20$ mm dual-pile, change Cu to Al
- **Q:** behind flange, keep $\phi < 40$ mm vacancy for Bhabha

• Prototyping

- ➢ IHEP Viking type FE with Si-wafer for RD (late summer 2021)
- LYSO crystal with SiPM, commercial FADC/FPGA for RD, proposing ASIC with fast sampler/flash-ADC for event rate every 32 ns\

• **To Do**

- precise GEOM in GEANT interface BHLUMI Bhabha events for event selection LYSO simulation and segmentation for shower center
- Build Viking Si-det. as RD samples
 LYSO readout with sources to characterize FE