TPC tracking detector for CEPC

Zhiyang YUAN

Institute of High Energy Physics, CAS Young Scientist Forum, Yangzhou, April 16, 2021

- Overview of TPC detector
- Position resolution, dE/dx
- Status of TPC R&D
- Summary

2

Time Projection Chamber (TPC)

The joint Workshop of CEPC 2021

Measure passing points along trajectory

 \hookrightarrow Directions of track

Measure the bend of tracks in B-Field

→ Momentum of charged particle

Particle Identification (PID)

Operating principle of TPC

Electric field and magnetic field are applied in parallel in the TPC

The joint Workshop of CEPC 2021

in the E-field towards the readout pad

2-dimensional (x,y) information

Particle ID and dE/dx

Momentum measurement

6

Momentum measurement

Momentum resolution

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} = \sqrt{\left(\begin{array}{c}\frac{\alpha'\sigma_{x}}{BL^{2}}\right)^{2} \left(\begin{array}{c}720\\N+4\end{array}\right)} p_{\perp}^{2} + \left(\begin{array}{c}\frac{\alpha'C}{BL}\right)^{2} \frac{10}{7}\\measurements\end{array}$$
multiple scatt
$$p_{\perp} : \text{transverse}\\momentum\\\sigma_{x} \cdot \text{ position resolution}\end{array}$$

$$B: \text{ strength of B-Field}\\N: \text{ #of measurement}\\points\end{array}$$

$$L: \text{ track detection length}\\\frac{X}{X_{0}}: \text{ radiation length of gas}$$

Required momentum resolution of CEPC at Higgs run $\sigma_{p_{\perp}} \sim 2 \times 10^{-5}$

$$\frac{p_{\perp}}{p_{\perp}} \approx 2 \times 10^{-5}$$

(including information of silicon tracker)

TPC only...
$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} \approx 1 \times 10^{-4}$$

The joint Workshop of CEPC 2021

 $(\frac{X}{X_0})$

tering

 $\alpha', C:$ constant

R.L. Gluckstern, NIM 24 (1963), 381

Position resolution

$$\sigma_{x} = \sqrt{\sigma_{0}^{2} + \frac{C_{d}^{2} \cdot z}{N_{eff}}}$$

z: drift length Neff: effective number of electron Cd: diffusion constant of gas

depends on drift length

Small position resolution σ_x

 $\sigma_x \approx 100 \,\mu m$

Even at the large drift length of 2.2 m

Strong magnetic field *B* ~ 3.0 *T*Gas mixture with small diffusion constant

Gas mixture

Ar : CF4 : iC4H10 = 95 : 3 : 2 T2K gas

The isobutane

act as a "quencher"

absorb ultraviolet photons from Ar molecules excited during

avalanche process

 \rightarrow might cause discharge and destabilise chamber operation.

bonus

A small amount of isobutane is added to obtain a high gas gain at low voltages

▷ Penning effect

The joint Workshop of CEPC 2021

Momentum measurement

Particle identification

Charged particle pass ->detect as track

dE/dx:Energy loss per unit length

The value of <dE/dx> depends on particle species at a given momentum

 \rightarrow particle <u>type</u> can be identified

The joint Workshop of CEPC 2021

From the direction of bending by a B-Field charge can be identified

particle <u>type</u>

$$-\beta^2 - \frac{\delta(\beta\gamma)}{2}$$

Particle identification

Function of $\beta \gamma = \rho/M$: <u>same distribution</u>

regardless of **particle type**

Plot with function of $p = M\beta \gamma$ shift according to **particle type**

(PEP4/9-TPC energy deposit measurement) Physics Letters B667 (2008) l available on the PDG

The joint Workshop of CEPC 2021

TPC detector with GEMs readout Micromegas readout

Momentum measurement Particle ID and dE/dx Readout module

Readout module

MWPC (Multi-Wire Proportional Chamber) has been used in various experiments

CEPC: B-field $\sim 3.0T$ \rightarrow E×B effect: bend the electron drift path near the wire the spread of drift electron is VERY LARGE under a strong axial B

Readout module

MPGD (Micro-Pattern Gas Detector)

Gas detector using PCB(Printed Circuit board) etching technology

Example of GEM **MPGD** G JESSEES Date :3 Sep 1

F.Sauli, NIM A 386(1997)531

<u>E×B effect</u> is suppressed even in a high B-Field

The position resolution is good!

The joint Workshop of CEPC 2021

MICROMEGAS

Position resolution of TPC prototype using GEM detector module at IHEP

Status of CEPC-TPC R&D

TPC R&D

To develop a high-performance TPC as a detector for CEPC

Our detector technology meets some critical challenges

- Reduced the ions to control Ion back flow

- Calibration using UV laser
- Low power consumption ASIC chip readout

One solution to solve them to use our module and prototype

TPC R&D

Highlight progress of TPC R&D:

- Simulation from CEPC TPC with IBF
 - Position < 20 μm distortion (*Gain* × *IBF* = 1 and *L* = 32 × 10³⁴ cm⁻²s⁻¹)
 - Study of TPC module and prototype
 - Lower gain and lower IBF ratio
 - Gain \times IBF could reach to 1 @Gain/2000
 - TPC prototype integrated UV laser beams
- Study of low power consumption FEE chip
 - Using more advanced 65nm CMOS process
 - AFE SAR ADC <5mW/ch @ Chip prototype
- Key issues and potential solutions:
 - Double meshes **Pixel TPC option** R&D with the lower IBF ratio
 - Calibration and alignment studies at Z pole using UV laser beams
 - Most requirement of dE/dx and momentum resolution, and others should be optimized

TPC Prototype integrated UV laser beams

FEE ASIC Chip using 65nm CMOS

Summary

- The CEPC TPC is a high-performance central tracker operated in a strong B-field, featuring ____ MPGD readout modules.
- The TPC provides excellent track pattern recognition capability with small 3-D voxels, along with ____ good position, momentum, and dE/dx information of each track in jets, which are indispensable for the Particle Flow Analysis.
- We have successfully developed a detector module and prototype that meets the requirements, and are now working on the R&D.
- Some new considerations of TPC technology will be developed to meet the high luminosity of Z ____ pole run in CEPC.