Progress of the CEPC detector R&D

João Guimarães da Costa (for the Physics and Detector Working Group)

Joint Workshop of the CEPC Physics, Software and New Detector Concept Yangzhou, April 14, 2021

Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

CEPC Detector Concepts studied for CDR

Particle Flow Approach

High magnetic field concept (3 Tesla)

Full silicon tracker concept

Final two detectors WILL be a mix and match of different options

2 interaction points

Low magnetic field concept (2 Tesla)

IDEA Concept also proposed for FCC-ee

CEPC Detector Concepts studied

Particle Flow Approach

High magnetic field concept (3 Tesla)

Full silicon tracker concept

Final two detectors WILL be a mix and match of different options

2 interaction points

Low magnetic field concept (2 Tesla)

IDEA Concept also proposed for FCC-ee

Crystal Calorimeter based detector (2-3 Tesla)

News reported at this workshop

Detector R&D Major R&D Breakdown

1. Vertex

- **1.1. Pixel Vertex Prototype**
- 1.2. ARCADIA/LFoundry CMOS

2. Tracker

- 2.1. TPC
- 2.2. Silicon Tracker
- 2.3. Drift Chamber
- 3. Calorimeter
- **3.1.ECAL** Calorimeter
- 3.1.1. Crystal Calorimeter
- 3.1.2. Scintillator-Tungsten
- **3.2. HCAL PFA Calorimeter**
- 3.2.1. DHCAL
- 3.2.2. Sci AHCAL
- **3.3. DR Calorimeter**

4. Muon Detectors

- 4.1. Muon Scintillator Detector
- 4.2. Muon and pre-shower MuRWell Detectors

5. Solenoid

- 5.1. LTS Solenoid
- 5.2. HTS Solenoid

6. MDI

- 6.1. LumiCal Prototype
- 6.2. Mechanics
- 7. TDAQ
- 8. Software and Computing

Total of 103 sub-tasks identified

CEPC CMOS Pixel Sensor Development

	JadePix1	JadePix2	MIC
Architecture	Roll. Shutter + Analog output	Roll. Shutter + In pixel discri.	Data-driv + In pixel
Pitch (µm ²)	33 × 33 /16 × 16	22 × 22	25 ×
Power con. (mW/cm²)			150
Integration time (µs)*		40-50	~3
Prototype size (mm ²)	3.9 × 7.9 (36 individual r.o)	3 × 3.3	3.1 ×
Main goals	Sensor optimization	Small binary pixel	Small p Fast rea nearly full f

* Assuming a matrix of 512 \times 1024 pixels

Contractory of				-		
a deside	a second s					
B 18						
11-10						
100	1.000					
	1 1					
	STREET, STREET	-	-	The sub-	-	

MIC4 (CCNU & IHEP)

JadePix3 (IHEP, CCNU, Dalian Minzu Unv., SDU)

TaichuPix-1 TaichuPix-2

FE-I3-like and ALPIDE-like pixel

Pitch: $25/24 \times 25 \,\mu m^2$

Power: 100-150 mW/cm²

Size: $5 \times 5 \text{ mm}^2$

IHEP, SDU, NWPU, IFAE & CCNU

CEPC CMOS Pixel Sensor Development: JadePix3

- wise
 - Shrink the pixel size by $\sim 7 \,\mu m$
- **Full-sized** in the φ direction
- **Extensible** in the z direction
 - 48 columns * 4 sectors

Sector	Diode	Analog	Digital	Pixel layout
0	2 + 2 µm	FE_V0	DGT_V0	16×26 µm²
1	2 + 2 µm	FE_V0	DGT_V1	16× 26 µm²
2	2 + 2 µm	FE_V0	DGT_V2	16× 23.11 μm²
3	2 + 2 µm	FE_V1	DGT_V0	16×26 µm²

MOST project goals achieved

Recent measurements:

Rolling shutter to avoid heavy logic and routing in the column-

• Matrix coverage: $16 \mu m * 512 rows = 8.2 mm$

• Matrix readout time: 192ns/row * 512 rows = **98.3** μs/frame

 Performance consistent with the design targets Low threshold and noise • Single point resolution $3 \sim 5 \,\mu m$, obtained with laser • Low power < 100 mW/cm², when extrapolated to FS sensor • Integration time $< 100 \,\mu s$

CEPC CMOS Pixel Sensor Development: TaichuPix

- **Pixel array** 1024*512
- Periphery
- **DAC & Bias** generation
- Data interface
- 5. LDO (test blocks)
- Chip interconnection features
- Scribe-able top power connection features

TaichuPix-2 irradiated at BSRF 1W2B beamline (6 keV X-ray)

Good chip function and noise performance proved up to 2.5 Mrad, and no deterioration observed up to **30 Mrad TID**

MOST project goals achieved

Full size chip ready to submit next month

Engineering run for Pixel Vertex detector prototype

Trigger mode: <100 mW/cm² Triggerless mode: 150 mW/cm²

Pixel Vertex Detector Optimization: Long Barrel Design

40		and the second s	and a second	and the second se						
		المترجب المحري								
20										
0										C
0	0	50	100	150	200	250	300	350	400	U
									z [mm]	

2-layer flex

		Optimization
	Thickness	goal
Polyimide	25um	12
Adhesive	28um	15
Plating Al	17.8um	?
kapton	50um	50
Plating Al	17.8um	?
Adhesive	28um	15
Polyimide	25um	12

- Better solution for air cooling
- - Possible vibration of long ladder

 - More readout copper in center

		Optimization
	thickness	goal
Polyimide	25um	12
Adhesive	28um	15
Plating Al	17.8um	?
kapton	50um	50
Plating Al	17.8um	?
kapton+adhesive	50um	50
Plating Al	17.8um	?
kapton	50um	50
Plating Al	17.8um	?
Adhesive	28um	15
Polvimide	25um	12

4-layer flex

Pixel Vertex Detector Optimization: New beampipe 20mm diameter

Innermost layer will be inside the boundary line, which defines the vertex detector coverage. Shorter innermost layer is required

Pixel Vertex Detector Prototype: Mechanics

The design model of ladder support

Vertex Detector Structure

Assembling Tooling

Inner and middle barrels combination and customized tool

Silicon Tracker design

Silicon tracker demonstrator with international partners

China

- Institute of High Energy Physics, CAS
- Shangdong University
- **Tsinghua University**
- iversity of Science and Technology of China
- Northwestern Polytechnical University
- Lee Institute Shanghai Jiao Tong University
- Harbin Institute of Technology
- University of South China
- Italy
 - INFN Sezione di Milano, Università di Milano e Università dell'Insubria
 - INFN Sezione di Pisa e Università di Pisa
 - INFN Sezione di Torino e Università di Torino

Germany

- UK
 - University of Bristol
 - STFC Daresbury Laboratory
 - University of Edinburgh
 - Lancaster University
 - University of Liverpool
 - Queen Mary University of London
 - University of Oxford
 - University of Sheffield
 - University of Warwick

DEMONSTRATOR (SHORT STAVE)

Concept QuadModule

Multiple modules on light composite support

- Alternate tile pattern for hermeticity
- Aggregation of data/optical conversion at the end-of-stave; serial powering

Readout unit based on 4 chips

- Shared services among 4 sensors by common power connections and configuration lines
- Benefits of in-chip regulators to reduce connections

Karlsruhe Institute of Technology

International group led by H.Fox (Lancaster) and M.Wang (SDU)

Start by using components developed for other projects

smaller pixel size (25×165 μm²)

Migrate to a Chinese foundry if possible

Time Projection Chamber at CEPC

- TPC is the baseline central tracker option in CEPC CDR
 - TPC limitations at high luminosity
 - Ion back flow in chamber

(Pixel readout also being considered as an option for a circular collider)

Lower power FEE ASIC chip development

Calibration and alignment using UV lasers

TPC Prototype

New, larger, readout board

larger area

New high-voltage field cage

>300V/cm

New ASIC and readout electronics

TPC Prototype under test

UV laser results indicate a resolution of 200 μ m to 350 μ m, depending on distance More studies are ongoing and the update analyzing will been done

Drift Chamber Option - IDEA Concept

Lead by Italian Colleagues

Low-mass cylindrical drift chamber

- Follows design of the KLOE and MEG2 experiments
- Length: 4 m
- Radius: 0.35- 2m

Layers: $14 SL \times 8 layers = 112$

New DAQ board: dual channel

- increase resolution and signal-to-noise ratio
- improve peak finding algorithm

Xilinx Kintex UltraScale FPGA **KCU105** Evaluation Kit chosen to be compatible with CAEN digitizer boards

AD9689 - 2000EBZ (dual channel) sufficient resolution and transfer capabilities

• Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)

• Spatial resolution: $< 100 \,\mu m$ • Max drift time: ~350 nsec • Cells: 56,448

Cell size: 12 - 14 mm

Front-end ASIC

a two stage amplifier for cluster counting/timing

Drift Chamber Considerations: dE/dx vx dN_{cl}/dx Expected from analytical calculation of IDEA chamber

80% cluster counting efficiency

Cluster counting potentially a factor 2 better than dE/dx, but requires fast electronics and good counting algorithms Depends on the $\sqrt{}$ of the track length Potentially can get same resolution as dE/dx with 4x smaller track ==> 0.5 meter drift chamber Work on-going in Italy and IHEP

4.3% dE/dx resolution

			-	
•••	•	•		
•••	•	•	• •	
•••	•	•	•	
•••	•	•		

Scintillator ECAL Prototype

scintillator strips

Ecal Basic Unit (EBU)

 \geq Energy resolution < $16\%/\sqrt{E}$, position resolution < $10mm \times 10mm$

> One EBU: 210 sensitive cells of scintillator strip coupling with SiPM

- Scintillator strips : $2mm \times 5mm \times 45mm$
- SiPM (HPK) : S12571-010P (24 layers) and S12571-015P (8 layers)
- Super-layers: two alternate of EBU and absorber layers integrated
- Complete Sc-ECAL prototype has been fabricated
 - Transverse dimension : $226 mm \times 222 mm$
 - Radiation length : $22 X_0$

Test beam at IHEP earlier this year

Scintillator-Tungsten Sandwich ECAL

Super-layer: two EBU and absorber layers integrated

Sc-ECAL prototype

Scintillator ECAL Prototype: testing

Test beam at IHEP

- IHEP E3 beam line: secondary particle beam
 - Mixed with proton/pion: proton dominate
 - Momentum : 300 MeV-1.2GeV
 - Event rate: less than 100 per minute

Total 12 thousands events collected

Further analysis on-gong

Cosmic ray tests

Position resolution better than 3mm, better than required by MOST project for CEPC ScECAL

Correction of incident angle and temperature effect on the ADC measurement implemented

Two Hadronic Particle Flow Calorimeters

Linearity: $\pm 3\%$

AHCAL **Scintillator and SiPM**

40 layers of 20 mm stainless steel + 3 mm scintillator + 2 mm PCB Transverse size: 72 × 72 cm² Length: 1.3 m

Single layer and detector part

Cell size: $4 \times 4 \text{ cm}^2$

Resolution: $\frac{60\%}{\sqrt{E(GeV)}} \oplus 3\%$

BMR: < 4%

SDHCAL **Glass RPC**

48 layers of 17.5 mm stainless steel + 6 mm RPC and electronics Transverse size: 100 × 100 cm² Length: 1.3 m

CALICE prototype

AHCAL: Scintillator and SiPM HCAL Prototype

16000 scintillators have been produced using the injection molding technique

The light yield of each scintillator is about 40 p.e., tested by NDL-22-1313-15S

Automatic wrapping and labelling 100 scintillators take 75 min

3 batch testing platforms built (USTC, SJTU, IHEP)

Uniformity within ±15%

72 cm

CL

HBU:HCAL Basic Unit

SDHCAL: Glass RPC

SJTU group has built: 50cm x 35cm, 100cm x 100cm RPCs

We are now building $1m \times 1m$ chambers.

Multigap Resistive Plate Chambers (MRPC)

Fast timing readout electronics for MRPC designed and manufactured

Using PETIROC chip from OMEGA group

Test platform have been constructed. The DAQ system is under development.

New Ideas: Crystal Calorimeters

Concern: Electromagnetic resolution of PFA calorimeter not optimal

Physics motivations:

- Electrons' Bremsstrahlung: energy recovery
- Improve angular resolution, and gamma counting
- Recoil photons: new physics and neutrino counting

Resolution:

New Ideas: Crystal Calorimeters

Two new segmented ECAL designs based on crystals

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

Crystals: LYSO:Ce, PbWO, BGO?

SiPM: HPK, NLD? **Being incorporated into CEPC Software**

- Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels
- Timing at two sides: positioning along bar

Need to control cost

Yong Liu

Dual Readout Crystal Calorimeter

Drawing from the pioneering work of RD52, but upgrading for new developments in inexpensive, high-QE, tailored-

Τ2

6X.

Τ1

wavelength sipmms See: https://arxiv.org/abs/2008.00338 Also see Snowmass LOI: SNOWMASS21-IF6-008.pdf

- **Timing layer**
- σ, ~ 20 ps
- LYSO:Ce crystals (~1X₀) 0
- 3x3x54 mm³ active cell 0
- **3x3 mm² SiPMs (15-20 um**) 0

ECAL layer

- σ_F/E ~ 3%/√E
- PbWO crystals 0
- Front segment (~6 X_0 ,~0.2 λ ,~50 mm) 0
- **Rear segment** (~16X₀,~0.7 λ ,~140 mm) 0
- 10x10 mm² crystal 0
- 5x5 mm² SiPMs (10-15 um) 0
- 3 SiPMs (one on entrance, two on exit)
- Thin solenoid between ECAL and HCAL

IDEA HCAL

CMS ECAL crystals are 22x22x230 mm

Chris Tully, Sarah Eno, et al

Dual Readout Crystal Calorimeter

Photon and Neutral Hadron Energy Resolutions

IDEA Detector: u-RWELL technology

	Pixel size (mm)
Pre-shower	0.4 × 500
Muon detector	1.5 × 500

Area (m ²)	Channels
120	570 k
2800	4 M

IDEA Detector: u-RWELL technology

- How to optimize the detector design to the CEPC physics program?
- How to reduce the input FEE capacity in the muon system?
- How to built more than 3000 m² of μ RWELL detectors?

First large area µRWELL (produced at CERN)

A second large area µRWELL of 500 x 500 mm² to be developed with ELTOS, an Italian company

Goal by 2024: Optimize engineering mass construction with the ELTOS Develop new specific ASIC, and complete simulation/reconstruction

TIGER-GEMROC technology developed by INFN within the CGEM-IT BESIII frame

µRWELL detailed simulation is on-going

Description to be included in DD4HEP framework within **Key4HEP** environment

CEPC Software migration to key4hep

CEPCSW: the first application of Key4hep

- Architecture of CEPCSW
 - external libraries
 - core software
 - CEPC applications for simulation, reconstruction and analysis.
- Core software •
 - Gaudi framework: defines interfaces of all the software components and controls the event loop.
 - EDM4hep: generic event data model.
 - FWCore: manages the event data. •
 - GeomSvc: DD4hep-based geometry management service.
- CEPCSW is already included in Key4hep software stack.

Xingtao Huang: https://indico.ihep.ac.cn/event/11444/session/12/contribution/169/material/slides/0.pdf4

CEPC_v4 reference detector

Projects overview: R&D schedule

PBS	Task Name	Start	Finish	2020)	2021		202	2	202	.3	2024		2025	5	2026		2027	,	2028		2029		20
				H1	H2	H1	H2	Η1	H2	Н1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	н
	CEPC Detector R&D Project	2020/5/7	2026/12/31	-														CEP	C Det	tector	R&D	Proje	ct	
1	Vertex	2020/5/7	2023/12/29	E		_						Ver	tex											
1.1	Vertex Prototype	2020/5/7	2023/12/29									Vert	ex Pr	ototy	pe									
1.2	ARCADIA CMOS MAPS	2020/5/7	2021/12/31					AR	CADIA	смо	OS MA	PS												
2	Tracker	2020/5/7	2024/12/31	E										I Tra	cker									
2.1	TPC Module and Prototype	2020/5/7	2021/12/31					TPC	C Mod	ule a	and Pro	totyp	e											
2.2	Silicon Tracker Prototype	2020/5/7	2023/10/31								5	ilicor	n Trac	ker P	rotot	ype								
2.3	Drift Chamber Activities	2020/5/7	2024/12/31											Drif	t Cha	mber /	Activi	ties						
3	Calorimetry	2020/5/7	2025/12/31	E		_										1 Calo	orime	try						
3.1	ECAL Calorimeter	2020/5/7	2024/12/31	F		_								EC/	AL Cal	orime	ter							
3.1.1	Crystal Calorimeter	2020/5/7	2021/12/31					Cry	stal Ca	alorin	meter													
3.1.2	PFA Sci-ECAL Prototype	2020/5/7	2024/12/31											PFA	Sci-E	CAL Pr	otot	/pe						
3.2	HCAL Calorimeter	2020/5/7	2023/4/28	E		_					HCAL	Calor	imete	er										
3.2.1	PFA Digital Hadronic Calorimeter	2020/5/7	2022/12/30							PFA	A Digita	al Had	Ironic	: Calo	rimet	er								
3.2.2	PFA Sci-AHCAL Prototype	2020/5/7	2023/4/28								PFA So	i-AHC	CAL P	rotot	ype									
3.3	Dual-readout Calorimeter	2020/5/7	2025/12/31													Dual	-reac	out C	Calori	meter	•			
4	Muon Detector	2020/5/7	2024/12/31	E										I Mu	on De	etecto	r							
4.1	Scintillator-based Muon Detector Prototype	2020/5/7	2023/12/29									Scint	tillato	or-bas	sed M	uon D	etect	or Pr	ototy	pe				
4.2	Muon and pre-shower µRWELL-based detector	2020/5/7	2024/12/31											Mud	on an	d pre-	show	er µR	WELL	-base	d de	tector	S	
5	Solenoid	2020/5/7	2026/12/31	E														Sol	enoid					
5.1	LTS solenoid magnet	2020/5/7	2025/12/31													LTS s	olen	oid m	agnet	t				
5.2	HTS solenoid magnet	2020/5/7	2026/12/31															HTS	soler	noid m	nagne	t		
6	MDI	2020/5/7	2023/12/29			_						MD	I											
6.1	LumiCal Prototype	2020/5/7	2021/12/1					Lum	iCal P	rotot	type													
6.2	Interaction Region Mechanics	2020/5/7	2023/12/29									Inte	ractio	on Reg	gion N	Aecha	nics							
8	Software and Computing	2020/5/7	2024/12/31											Sof	tware	and (Comp	uting	:					

Projects overview Total subtasks: 103

PBS	Task Name	Page	Subtask	Context	Team	Document Responsible
	CEPC Detector R&D Project					
1	Vertex					
1.1	Vertex Prototype	5	9	CEPC	China+ international collaborators	Zhijun, Ouyang
1.2	ARCADIA CMOS MAPS	6	6	Generic	INFN, Italy	Manuel Rolo
2	Tracker					
2.1	TPC Module and Prototype	6	10	CEPC	IHEP, Tsinghua	Huirong
2.2	Silicon Tracker Prototype	6	8	Generic	China, UK, Italy	Harald Fox, Meng Wang
2.3	Drift Chamber Activities	4	3	FCC-ee/CEPC	INFN, Novosibirsk	Franco Grancagnolo
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	4	6	CEPC	IHEP, Princeton + others	Yong Liu
3.1.2	PFA Sci-ECAL Prototype	3	3	CEPC	USTC, IHEP	Jianbei Liu
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	4	5	CEPC	SJTU, IPNL, Weizmann, IIT, USTC	Haijun Yang, Imad Laktineh, Shikma Bressler
3.2.2	PFA Sci-AHCAL Prototype	4	4	CEPC	USTC, IHEP, SJTU	Jianbei Liu
3.3	Dual-readout Calorimeter	5	5	FCC-ee/CEPC	INFN, Sussex, Zagreb, South Korea	Roberto Ferrari
4	Muon Detector					
4.1	Scintillator-based Muon Detector	4	6	CEPC	Fudan, SJTU	Xiaolong Wang, Liang Li
4.2	Muon and pre-shower µRWELL-	5	5	FCC-ee/CEPC	INFN, LNF	Paolo Giacomelli
5	Solenoid					
5.1	LTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
5.2	HTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
6	MDI					
6.1	LumiCal Prototype	5	2	ILC/CEPC	AC, IHEP	Suen Hou
6.2	Interaction Region Mechanics	4	4	CEPC	IHEP	Hongbo Zhu
8	Software and Computing	11	19	CEPC	IHEP, SDU	Li Weidong, Ruan Manqi, Sun Shengseng, Li G

17 documents, total: 85 pages

Projects overview: FTE

Total:	156	12	56	16
	Faculty	Postdoc	Students	Engineers
ators	21		17.2	3.5
	55 people, mostly	v staff INFN and Uni	versity Associates	
	3		4	1
	50		4	5
	2.5	2.4	5. L	0.8
	1 2		1 5	
	1.5		2 5	
	L . <i>J</i>		2.5	
TC	2.1	1.8	2.6	0.3
	2.3	0.8	4	
Corea	4.2	2.2	6.8	1.3
	1.2		2.1	0.2
	2	1.5	1	0.3
	2	0	1	0.5
	1.5	0	1	0.5
	4	4		
	0.5		1.5	

		Toto	al: 156	12	56	16
PBS	Task Name CEPC Detector R&D Project	Team	Faculty	Postdoc	Students	Engineers
1	Vertex					
1.1	Vertex Prototype	China+ international collaborators	21		17.2	3.5
1.2	ARCADIA CMOS MAPS	INFN, Italy	55 people, mostly	y staff INFN and Un	iversity Associates	
2	Tracker					
2.1	TPC Module and Prototype	IHEP, Tsinghua	3		4	1
2.2	Silicon Tracker Prototype	China, UK, Italy	50		4	5
2.3	Drift Chamber Activities	INFN, Novosibirsk	2.5	2.4	1.8	0.8
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	IHEP, Princeton + others	1.3		1.5	
3.1.2	PFA Sci-ECAL Prototype	USTC, IHEP	1.9		2.5	
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	SJTU, IPNL, Weizmann, IIT, USTC	2.1	1.8	2.6	0.3
3.2.2	PFA Sci-AHCAL Prototype	USTC, IHEP, SJTU	2.3	0.8	4	
3.3	Dual-readout Calorimeter	INFN, Sussex, Zagreb, South Korea	4.2	2.2	6.8	1.3
4	Muon Detector					
4.1	Scintillator-based Muon Detector	Fudan, SJTU	1.2		2.1	0.2
4.2	Muon and pre-shower µRWELL-	INFN, LNF	2	1.5	1	0.3
5	Solenoid					
5.1	LTS solenoid magnet	IHEP+Industry	2	0	1	0.5
5.2	HTS solenoid magnet	IHEP+Industry	1.5	0	1	0.5
6	MDI					
6.1	LumiCal Prototype	AC, IHEP	1	1	2	1
6.2	Interaction Region Mechanics	IHEP	0.5	0.3	1.5	2
8	Software and Computing	IHEP, SDU	7	2	3	0

Projects overview: FTE

Ο	Τ

PBS	Task Name	Team		
	CEPC Detector R&D Project			
1	Vertex			
1.1	Vertex Prototype	China+ international collaborators		
1.2	ARCADIA CMOS MAPS	INFN, Italy		
2	Tracker			
2.1	TPC Module and Prototype	IHEP, Tsinghua		
2.2	Silicon Tracker Prototype	China, UK, Italy		
2.3	Drift Chamber Activities	INFN, Novosibirsk		
3	Calorimetry			
3.1	ECAL Calorimeter			
3.1.1	Crystal Calorimeter	IHEP, Princeton + others		
3.1.2	PFA Sci-ECAL Prototype	USTC, IHEP		
3.2	HCAL Calorimeter			
3.2.1	PFA Digital Hadronic Calorimeter	SJTU, IPNL, Weizmann, IIT, USTC		
3.2.2	PFA Sci-AHCAL Prototype	USTC, IHEP, SJTU		
3.3	Dual-readout Calorimeter	INFN, Sussex, Zagreb, South Korea		
4	Muon Detector			
4.1	Scintillator-based Muon Detector	Fudan, SJTU		
4.2	Muon and pre-shower µRWELL-	INFN, LNF		
5	Solenoid			
5.1	LTS solenoid magnet	IHEP+Industry		
5.2	HTS solenoid magnet	IHEP+Industry		
6	MDI			
6.1	LumiCal Prototype	AC, IHEP		
6.2	Interaction Region Mechanics	IHEP		
8	Software and Computing	IHEP, SDU		

Snowmass — Letters of Intent

14 CEPC-Related Detector Lol submitted

https://indico.ihep.ac.cn/event/12410/

Detect	or R&D		
Conven	ers: Joao Guimaraes Costa, WANG Jianchun, Mr. Manqi Ruan (IHEP)		
15:00	CEPC Detectors Overview LoI 1'	15:10	PFA Calorimeter 1'
	CEPC Detector Overview LOI		Speakers: Haijun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science
	SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf		Technology of China), Dr. Yong Liu (Institute of High Energy Physics)
	Speakers: Joao Guimaraes Costa, Mr. Manqi Ruan (IHEP), WANG Jianchun		Material: Slides 📆
	Material: Paper 🕑 Slides 🎵		
		15:11	High Granularity Crystal Calorimeter 1'
15:02	IDEA Concept 1'		Speaker: Dr. Yong Liu (Institute of High Energy Physics)
	Speaker: Franco Bedeschi (INFN-Pisa)		Material: Paper 🕑 Slides 🔂
	Material: Paper 🕑	15.12	Muon Scintillator Detector 1'
15.03	Dual Readout Calorimeter 1/	10.12	Speaker: Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)
13.05	Speaker: Roberto Ferrari (INEN)		Material:
	Material: Research C		document
	Paper D	15:13	Vertex LoI 1'
15:04	Drift Chamber 1'		Speaker: Prof. Zhijun Liang (IHEP)
	Speaker: Franco Grancagnolo		Material: Slides 📆
	Material: Paper		
		15:15	MDI LoI 1'
15:06	mu-RWELL (muons, preshower) 1'		Speaker: Dr. Hongbo ZHU (IHEP)
	Speaker: Paolo Giacomelli (INFN-Bo)		Material: Slides 🔁
	Material: Paper	15-16	TPC LoT 1/
15.08	Time Detector LoT 1/	10.10	Speaker: Dr. Huirong Oi (Institute of High Energy Physics, CAS)
13.00	Speaker: Prof. Zhijup Liang (IHEP)		Material:
	Matariali and T		Slides []
	Material: Slides 7	15:17	Solenoid R&D LoI 1'
15:09	Key4hep 1'		Speaker: Dr. Feipeng NING (IHEP)
	Speakers: Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University),		Material: Slides 📆
	Wenxing Fang (Beihang University)		
	Material: Slides 📆		
15:09	Speaker: Prof. Zhijun Liang (IHEP) Material: Slides Key4hep 1' Speakers: Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University), Wenxing Fang (Beihang University) Material: Slides Slides Slides	15:17	Material: Sildes Solenoid R&D LoI 1' Speaker: Dr. Feipeng NING (IHEP) Material: Sildes Sildes

Final remarks

Now considering new ideas and developing new tools

Need more time to explore alternatives and test these ideas

Final detectors are to be defined by International Collaborations and they are likely to incorporate a mixture of the technologies discussed here

Key detector technologies R&D continues and are put to prototyping

Several CEPC R&D detector projects reaching a successful conclusion

Extra slides

Updated Parameters of Collider Ring since CDR

	Hig	ggs	Z (2T)		
	CDR	Updated	CDR	Updated	
Beam energy (GeV)	120	-	45.5		
Synchrotron radiation loss/turn (GeV)	1.73	1.8	0.036	-	
Number of particles/bunch N _e (10 ¹⁰)	15.0	16.3	8.0	16.1	
Bunch number (bunch spacing)	242 (0.68µs)	214 (0.7 μs)	12000	10870 (27ns)	
Beam current (mA)	17.4	16.8	461.0	841.0	
Synchrotron radiation power /beam (MW)	30	-	16.5	30	
Cell number/cavity	2	-	2	1	
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.33/0.001	0.2/0.001	0.15/0.001	
Emittance ϵ_x/ϵ_y (nm)	1.21/0.0001	0.08/0.0014	018/0.9016	0.52/0.0016	
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	15.0/0.037	6.0/0.04	8.8/0.04	
Bunch length σ _z (mm)	have r	not yet be	en abso	rbed.6in	
Lifetime (hour)	^{0.67} by gies ^{0.65}				
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)					

Luminosity increase factor:

× 1.8

× 3.2

Tracker Detector - PFA Detector

Tracker material budget/layer: ~0.50-0.65% X/X₀

25 cm

12 cm

Total Silicon area ~ 68 m²

Required resolution $\sigma_{SP} < 7 \ \mu m$

Sensor technology

- **1. Microstrip sensors** double layers: stereo angle: 5°-7° strip pitch: 50 µm
- 2. Large CMOS pixel sensors (CPS)
 - **HV-CMOS** research on-going: SUPIX-1 / -2 sensor prototypes

Power and Cooling

- **1. DC/DC converters**
- 2. Investigate air cooling

Extensive opportunities for international participation

CEPC CDR: Particle Flow Conceptual Detector

Major concerns being addressed

- 1. MDI region highly constrained L* = 2.2 m Compensating magnets
- 2. Low-material Inner Tracker design
- 3. TPC as tracker in high-luminosity Z-pole scenario
 - 4. ECAL/HCAL granularity needs Passive versus active cooling Electromagnetic resolution

Magnetic Field: 3 Tesla

CEPC CDR: IDEA Conceptual Detector (CEPC + FCC-ee)

Inspired on work for 4th detector concept for ILC

Calorimeter outside the coil

* Dual-readout calorimeter: 2 m/8 λ_{int} * Preshower: ~1 X₀

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

Drift chamber: 4 m long; Radius ~30-200 cm, ~ 1.6% X₀ , 112 layers * (yoke) muon chambers

Vertex: Similar to CEPC default

CMOS Large-Pixel Sensors for Tracker

SUPIX1 (Shandong University PIXel)

Produced and under test

- Matrix: 64 × 16
- Rolling shutter readout mode
- 16 parallel analog outputs
- Sensitive area: 2 × 7.88 mm²

SUPIX2 Submitted to SMIC in November

- Matrices: 32 × 16
- Rolling shutter readout mode
- 16 parallel analog outputs
- Pixel sizes: $60 \times 60 \ \mu m^2$, $60 \times 180 \ \mu m^2$

MDI Assembly and Installation

Engineering studies started

Different scenarios under study

Silicon tracker assembly pushed from one side

Vacuum connections closed remotely

MDI Assembly and Installation

Engineering studies started

Different scenarios under study

Needs close collaboration between detector designers and MDI engineers

Time Projection Chamber (TPC)

Allows for particle identification

Low material budget:

- <1% X₀ in r
- 10% X₀ for readout endcaps in Z

Readout by: Micro-Pattern Gas Detector (MPGD)

Full Silicon Tracker Concept

y Berkeley and Argonne mited particle identification (dE/dx)

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Some longitudinal granularity

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

Crystal Calorimeter (LYSO:Ce + PbWO) **Dual readout calorimeters (INFN, Italy + Iowa, USA) – RD52**

ECAL Calorimeter — Particle Flow Calorimeter Scintillator-Tungsten Sandwich ECAL

Crucial parameters

- Absorber thickness: 24 X₀
- Layer number: 30 layers
- Cell size: < 10 mm × 10 mm

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: Scintillator 5 x 45 mm²
- 2 mm thick: Readout/service layer

SiPM studies Determined the optimal dynamic range of SiPM for both Sci-ECAL and AHCAL

1. SiPM with more than 10000 pixels are not required

2. SiPM to be located in center of strip

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the D

Projective 4π layout implemented into CEPC simulation (based on 4th Detector collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different depths to keep constant the sampling fraction)

/**5**m ΕI 1.8m $\cos(\text{theta}) > 0.995$

Performance in G4 simulation: EM resolution: $10.3\%/\sqrt{E} + 0.3\%$ Had resolution : ~34%/ \sqrt{E}

Studying different readout schemes PMT vs SiPM

Several prototypes from RD52

nave been built

Superconductor solenoid development **3 Tesla Field Solenoid**

Operating current 15.8 A

Cable length

30.1 km

Default is NbTi Rutherford SC cable (4.2K) High-Temperature SC cable is also being considered (YBCO, 20K)

Design for 2 Tesla magnet presents no problems Thin HTS solenoid being designed for IDEA concept **Double-solenoid design also available**

Muon Detector System

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: > 95%

Baseline: Bakelite/glass RPC

Other technologies considered

Monitored Drift Tubes Gas Electron Multiplier (GEM) MicroMegas

New technology proposal (INFN): µRwell

Better resolution (200-300 µm) at little extra cost (?)

Muon system: open studi

Good experience in China on gas detectors little strong direct R&D on CEPC — rather c international collaboration

Layout optimization:

Visit the requirements for number of lay

Implications for exotic physics searches
Use as a tail catcher / muon tracker (TCMT)

• Jet energy resolution with/without TCMT Detector industrialization

