

Progress and planning of the Silicon Tracker

H. Fox for the SiTracker project

Joint Workshop of the CEPC Physics, Software and New Detector Concept

YangZhou, 14 April 2021

CMOS SiTracker working group

- Australia
 - University of Adelaide
- China
 - Institute of High Energy Physics, CAS
 - Shangdong University
 - Tsinghua University
 - University of Science and Technology of China
 - Northwestern Polytechnical University
 - T.D. Lee Institute Shanghai Jiao Tong University
 - Harbin Institute of Technology
 - University of South China
- Germany
 - Karlsruhe Institut f
 ür Technologie

- Italy
 - INFN Sezione di Milano, Università degli Studi di Milano e Università degli Studi dell'Insubria
 - INFN Sezione die Pisa e Università di Pisa
 - INFN Sezione di Torino e Università degli Studi di Torino
- UK
 - University of Bristol
 - STFC Daresbury Laboratory
 - University of Edinburgh
 - Lancaster University
 - University of Liverpool
 - Queen Mary University of London
 - University of Oxford
 - STFC Rutherford Appleton Laboratory
 - University of Sheffield
 - University of Warwick

CEPC tracker designs: TPC or DCH + Si

Baseline tracker design: TPC

and 3 layers / 5 disks of silicon sensors,

50 m² (33 w/o ETD) if built in CMOS pixels (strips default)

Detector		Radiu	s <i>R</i> [mm]	$\pm z$ [mm]	Material budget $[X_0]$			
SIT	Layer 1		153	371.3	0.65%			
511	Layer 2		300	664.9	0.65%			
SET	Layer 3	1	811	2350	0.65%			
		$oldsymbol{R}_{ ext{in}}$	$R_{\rm out}$					
FTD	Disk 1	39	151.9	220	0.50%			
	Disk 2	49.6	151.9	371.3	0.50%			
	Disk 3	70.1	298.9	644.9	0.65%			
	Disk 4	79.3	309	846	0.65%			
	Disk 5	92.7	309	1057.5	0.65%			
ETD	Disk	419.3	1822.7	2420	0.65%			

Physics	Measurands	Detector	Performance			
process		subsystem	requirement			
$\begin{array}{c} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 imes 10^{-5} \oplus rac{0.001}{p({ m GeV}) \sin^{3/2} heta}$			

σ_{rφ}≈7μm

- Sla @ medap - high 20 80 100 0 relative 20 No SIT ----better -20 20 40 60 80 100 120 Transverse momentum p_t [GeV/c]

00

Momentum resolution for varying gas mixtures in the TPC. All other geometry is the same as default.

studies

120

4

Percentage difference between default geometry and various gas mixtures. Negative values correspond to a decrease in absolute value of $\sigma p_T/p_T$, meaning that resolution has improved by y%.

Sensor(s): ATLASPix, 55nm HLMC, Arcadia

ATLASPix

Monolithic CMOS allows to produce large areas fast and cheap

- Reticule: 2.02 cm by 2.1 cm; Pixel: 150 μm by 50 μm (or smaller)
- **25ns timing**, 1.28 GBit/s downlink; 2 End of Column buffers

372 hit buffers for triggerless re

80 trigger buffers for triggered r

Concentrate on understanding an sensor (6 institutes)

Fe-55 with collimation

O(100) sensors ATLASPix 3.0 and 3.1

Submission of MPW for CEPC, LHCb & other projects

55 nm HLMC design

Chinese foundry Collaboration between IHEP, KIT & others Aim for MPW in August

Arcadia

to PC

Ethernet

tt tt	E E	E E	±		ш	E E	H H	tti tti	E E	E E	E E			t t	
	⊞⊞	æ æ	E E	⊞ ⊞	⊞⊞	±	Ð		⊞∦⊞	Ð				Ð	⊞⊞
E E	E E	Œ	æ	Ð E	œ œ	ÐĒ	E E	œ œ	± Đ	æ æ	æ æ	œ œ	œ œ	æ æ	ÐB
E E	æ æ	æ. æ	æ	æ e	æ æ	æ	E E	ÐÐ	ÐÐ	æ æ	æ æ	Ð Ð	⊕.⊕	ÐÐ	ÐĐ
E	⊞ ⊞	⊞⊞	ΞĒ	Ð	•	Ð	⊞⊞	œ∷ œ	± ±	⊞ ⊞	⊞ ⊞	œ œ	Ð	E	⊕ ⊞
•	œ œ	⊞ ⊞	ŒŒ	œ,œ	œ e	œ œ	œ œ	œ 🖽	æ æ	œ œ	œ œ	œ œ	œ 🖽	± Đ	œ æ
Ð Ð	œ œ	Ð	Ð	ÐÐ	e e	Ð	Ð	Ð Ð	Ð	e e	e e	Ð	e e	Đ Đ	e e
E E	æ 🗉	ÐÐ	•	e E	E	Ð	Ð	Ð	E E	ÐÐ	Ð	Ð	æ æ	÷ •	Ð
⊕ ⊕	⊞⊞	Œ	Œ	∃ ⊞	⊞ ⊞	Œ	Đ	ÐÐ	⊞⊞	Ð Ð	Œ	± ±	⊞⊞	ÐĐ	Ð Ð
⊞ ⊞	⊕ ⊕	æ 🖽	⊞ ⊞	⊕ ⊕	⊞ ⊞	œ œ	æ 🕀	œ ⊕	⊞⊞	œ œ	± ±	H H	•	œ e	•
⊞ ⊞	⊞ ⊞	æ æ	æ	æ æ	B	⊞ ⊞	æ æ	Ð	⊞⊞	⊕ ⊕	æ æ	• E		ÐÐ	Ð
Ð Đ	± ±	•	=	Ð 🕀	E	œ.e	ÐÐ	Ð Ð	⊞ ⊞	e e	± ±	ÐÐ	ÐÐ	ÐĐ	0 B
Ð Đ	0	± •	= E	œ 🖽	œ œ	ı E	•	œ 🕀	E E	œ œ	• E	•	E E	D	E
œ e	± ±	œ œ	⊞≣Œ	œ≡œ	œ œ	Ð	⊕ ⊕	œ œ	æ æ	⊕ ⊕	⊕ ⊕	œ⇒⊕	ŒŒ	± ±	⊞ ⊞
œ æ	⊞ ⊞	⊞ ⊞	æ e	± E	E	±.E	€ ⊕	Ð. Ð	æ. e	Ð Ð	⊞⊞	œ 🖻	œ e	± ±	⊞.⊞
Ð Ð	œ œ	œ œ	Ð	ÐĒ	æ æ	æ æ	œ œ	Ð Ð	æ æ	Ð.Ð	œ.e	Ð.Ð	±.	± ±	Ð Ð
ÐĐ	æ æ	Ð	Ð	Ð	⊞.⊡	Đ Đ	Ð Ð	ÐÐ	Ð	Ð Ð	Ð Ð	Ð	E	Đ.	Đ Đ
	•	œ æ	E E	Ð Ð	B B	Ð Ð	Ð Ð	Ð Đ	•	Ð Ð	± ±	÷ ÷	8 8	œ 🕀	œ e

- Pixel size: 25 μm x 25 μm
- Matrix core 512 x 512, side-buttable.
- Matrix, EoC architecture, data links scalable to 2048 x 2048
- Trigger-less binary data readout, up to 10-100 MHz/cm²

Modules: Quads from 4 sensors

Readout unit based on 4 chips

4-layer flex hybrid (2 power, 2 signal)

impedance-matched lines

shared services among 4 sensors by common power connections and configuration lines

benefits from in-chip regulators to reduce connection

in the minimal configuration 1 power, 1 command in, 4 data out

Physics | Lancaster

Electronic testing well advanced, ready for readout-test with sensors.

112

DAQ: YARR Yet Another Rapid Readout

7

https://iopscience.iop.org/article/ 10.1088/1742-6596/898/3/032053

YARR is a small **self-contained DAQ system**. Linux PC with a x4 **PCIe slot** for the FPGA card

FPGA card: e.g. **Trenz TEF1001**, XpressK7,... **FMC cards** for FE-I4 and RD53A ("Ohio card"

Up to **1.6GBit/s possible** with this setup.

We have used the YARR readout with a digital RD53A module in Lancaster & Edinburgh.

Todo: Adaptation to ATLASPix3 necessary:

• Add a display port to the GECCO system (IHEP) and the module adapter card (Edinburgh)

YARR (multi) module readout

The Edinburgh adapter card needs to be adapted to have a mini display port connector (Edinburgh):

- 1 command line per module (AUX lines of mini display port)
- 4 (differential) data out lines (1 per chip)
- 1 (differential) reference clock line (for debugging)
- additional lines to have a fixed setting (Rudolf, jumpered?)

Tile conceptual design

l/O Board. Receives power, control signals, CLK and trigger. Takes high-speed data from 48 ASICs & multiplexes together to a few multi-Gb (optical?) links HV-CMOS Quad Module (6 on top and 3 on bottom) with Hybrid based on Ilya Tsurin's RD53A design High-speed I/O Interconnect from quads to I/O board Cables from under-side wrap around end and wire-bonded to I/O board

9

Thermal simulation

Assume a **serial powering scheme** of e.g. 12 modules. Sensors have **on-chip regulators** to make this possible. Reduces the number of power lines significantly.

Power consumption of ~2.4W / quad module. Example of Layer 1 half barrel: 12*2*10*2.4=576W. Layer 2 half barrel: 24*2*16*2.4=1.8kW

Assume CO2 cooling.

Trigger & DAQ

The chip has very effective zero-suppression

- no noise occupancy
- digital cross talk to be determined
- physics and background occupancy for the tracker is extremely low

Need effective data aggregation

ATLASPix3 can operate

triggerless: no guaranteed event ordering; 10bit timestamp

triggered: event tag for each trigger, easy identification

Carbon fibre support structure

ALICE: Cold plate on a carbon fibre support structure

SiC Option

Prototyped all-SiC vertex detector Machined bulkheads Layer 2: 30cm long and 2.5 cm radius Achieved 0.09% X₀ including 20µm silicon sensor

System design: mechanical support

CDR baseline design with 2 SIT layers.

To be optimised: New layout, interfacing between sub-detectors, integration scheme

Conclusions & Outlook

We have a good sensor with ATLASPix3 that fulfils all the requirements. Full characterisation well advanced and ongoing. Further evolvements towards CEPC and a new 55nm development are ongoing.

DAQ options for larger (test) systems are under development, in particular YARR.

A first conceptual design for a stave is available.

We plan to have a testbeam with a telescope within a year.

Feedback from the tracking task force feeds into the hardware design.First mechanical support structure designs are being worked on.A dedicated group has been kicked off.

Backup