Higgs CP via Higgs to ZZ final state in CEPC

Yanxi Gu^a, <u>Ke Li^b</u>, Mengyao Liu^c, Xin Shi^d, Meng Xiao^e

^{a,} University of California San Diego

^{b,} University of Washington

^{c,} Shandong University

d: Institute of High Energy Physics

e, Zhejiang University

CEPC workshop @ Yangzhou 2021/04/16

Motivation

- The observed 125 GeV Higgs is spin-0, CP-even
- New physics -> anomalous coupling

The way to search for anomalous coupling

- Anomalous coupling is sensitive to angular distributions
- helicity angle and azimuthal angle

Experimental results on anomalous coupling

Expectation at hadron/lepton collider

- At HL-LHC, sensitivity could reach 10⁻³
- At lepton collider (250/fb at 250 GeV), sensitivity is comparable with HL-LHC
- Further improved from combination of ee->ZH and H->VV

At CEPC

Production cross sections

- ~ 5 ab⁻¹ data at √s = 240 GeV
 ~1M ee->ZH events with much lower background than LHC
- Ideal place for search of anomalous coupling

Previous study at CEPC

 $e^{+}(\overline{q})$

- Maximum likelihood fit on the angular distributions for $e^+e^- \rightarrow ZH \rightarrow \mu^{\pm}\mu^{\mp}b\overline{b}$
- Sensitivity for f_{a3} is 0.007
- convert to H->ZZ decay

$$f_{a3}^{dec} = 1.3 \times 10^{-4}$$

How about the study of H->ZZ ?

7

Analysis Strategy

- Start with generator-level analysis
 - Selections on truth kinematics (Pt > 3 GeV and $cos\theta < 0.85$)
- Analyze both production (ee->ZH) and decay (H->ZZ) vertex
 - H->bb or H->ZZ (start with ZZ-> 4μ)
 - Rich kinematics (helicity angles...) sensitive to anomalous couplings
 - Use BDT to combine all variables
- Anomalous couplings at two distinct Q²(240 and 125 GeV)
- Unique advantage of CEPC
- Sensitive to difference phase space

Angular distributions

Useful observables: ϕ , ϕ_1 , $cos\theta_1$, $cos\theta_2$, $cos\theta_*$

Other variables, e.g. Pt, will be tested

Angular distributions

• For $H \to ZZ^*$ $(ZZ^* \to \mu^{\pm}\mu^{\mp}\mu^{\pm}\mu^{\mp})$

Asymmetry caused by selections on kinematic variables

Azimuthal angle

- azimuthal distribution is also helpful
- Final discriminer: BDT score

11

Production vertex (ee->ZH)

- BDT with ϕ , $cos\theta_1$, $cos\theta_2$
- Very-preliminary results
- Maximum likelihood fit on the BDT distributions

Expected results

- Upperlimit at 95% C.L.
 - anomalous coupling ratio
 - $\frac{ghz_{odd}}{ghz_{SM}} < 3.9 \times 10^{-2}$
 - $f_{a3}: < 1.2 \times 10^{-2}$
 - Consist (slightly better) to previous CPEC results
- Convert to H->ZZ
 - $f_{a3}^{dec} < 2.3 \times 10^{-4}$

Decay vertex $(H \rightarrow ZZ^* \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\mu^{\mp})$

• Inclusive H->ZZ

- $ZZ^* \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm} \mu^{\mp}$ should be very clean
- Background need to be studied carefully
- BDT with $\phi, \phi_1, \cos\theta_1, \cos\theta_2, \cos\theta_*$
- Very-preliminary results
- Maximum likelihood fit on the BDT distributions

Expected results

- Upperlimit at 95% C.L.
 - Anomalous coupling ratio
 - $f_{a3}: < 5.5 \times 10^{-3}$
- The converted limit from ee->ZH
 - $f_{a3}^{dec} < 2.3 \times 10^{-4}$
- Limited by statistics
 - More decay channels of Z should be helpful
 - Other channels, H->WW $\rightarrow l^{\pm}\nu qq$, is possible at CEPC

Summary

- Naive generator-level analysis for anomalous coupling from both ee->ZH and H->ZZ channels are performed
- Sensitivity of H->ZZ is worse than ee->ZH but still comparable with the results from LHC, main limitation is statistics
- More channels will be added
- ee->ZH and H->ZZ will be analyzed simauteously
- More comprehensive analysis with CEPC simulation and reconstruction