A global analysis approach to measure Higgs Br's

Y. Bai, L. Liao, G. Li, W. Song, J. Sun, S. Wang, H. Zhang, Z. Zhang, B. Zhou

> CEPC physics workshop, Yangzhou, April 14-17, 2021

Outline

- Introduction
- Methods
- Preliminary results of the matrix
- Summary and plan

A global analysis approach, talk at PKU workshop, 2019

- CEPC Higgs Br measurement
 - 9 Higgs decays accessible at CEPC
 - Typical S/N ratio ~ 1/O(1)
 - Some Br's very small ($\mu\mu,\gamma\gamma,\gamma Z$)
 - Contaminations among them are an issue
 - cc/bb/gg/WW/ZZ/ $\tau\tau$: hadronic FS
- Global analysis shows promising results

		MLT		POS
Bcc	2.713%	0.773% (0.779%	0.790%)
Bbb	57.799%	0.102% (0.111%	0.171%)
Bmm	0.023%	8.547%	8.559%	8.560%)
Btt	6.319%	0.492%(0.501%	0.518%)
Bgg	8.619%	0.413% (0.424%	0.443%)
Baa	0.227%	2.728% (2.731%	2.734%)
BaZ	0.150%	3.350% 🤇	3.353%	3.356%)
BZZ	2.647%	0.783% (0.789%	0.800%)
BWW	21.496%	0 235% (0.249%	0 281%)

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b\bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
$H \to gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H\to\gamma\gamma$	6.8%	6.9%
$H\to Z\gamma$	15%	15%
$H\to \tau^+\tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to \mathrm{inv}$	_	< 0.30%

Very rough estimation

Global analysis approach Measuring all Br's simultaneously

 σ_N :

- - **Complete confusion matrix**
 - **Multinomial distribution:** smaller stat. uncertainty
 - **Constraint: improve precision**

 $V \times p \times (1 - p)$ for multinomial

 $V \times p$ for Poisson

non-Higgs background

- subtracted with fitting for other method
- worsen σ_{n_i} 's

The simplest example -2 decays only

Efficiency matrix From MC, no dependence on Br's

N→Branching fractions Formula shows very simple features

- Variance of B's proportional to $1/(N^4|E|^2)$
- N⁴: statistical power
- |E|²: performances of Detector x
 Reconstruction x Analysis
- 2 Br's have same uncertainties
- \checkmark Always valid for # of Br's > 2

This formula still valid for more decay modes

 Σ_B : Variance of Br's

If someone wants complete formula ...

$$egin{aligned} \Sigma^B &= egin{pmatrix} \sigma_{B_1}^2 & \sigma_{B_{12}} \ \sigma_{B_{21}} & \sigma_{B_2}^2 \end{pmatrix} \ &= rac{(n_2ec{\sigma}_{n_1} - n_1ec{\sigma}_{n_2})^2}{N^4 |E|^2} egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} \end{aligned}$$

Efficiency matrix

Individual analysis

- Signal: high efficiency
- Backgrounds: lower fake rate
 - Higgs backgrounds: contaminations among Higgs decays
 - Non-Higgs backgrounds: SM backgrounds
- $(\epsilon_s, \epsilon_{hb1}, \epsilon_{hb2}, \epsilon_{hb3}, \dots, \epsilon_{SM})$
- Usually done by a person or a small group
- Different analyses lack of information sharing

Global analysis: Solve all Br's simultaneously

Higgs -> cc, bb, mm, *ττ*, gg, *γγ*, ZZ, WW, *γ*Z 1 2 3 4 5 6 7 8 9

$\left(\begin{array}{c}n_1\end{array}\right)$		$\left(\epsilon_{11} \right)$	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}	$\left(\begin{array}{c} N_1 \end{array} \right)$
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N_2
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N_3
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N_4
n_5	=	€51	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N_5
n_6		661	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{00}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N_6
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N_7
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N_8
$\left(\begin{array}{c} n_9 \end{array} \right)$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99} /	$\left(N_9 \right)$

SM backgrounds not shown here

Global analysis vs. individual analysis

- More information used
- Information sharing among different decay modes via efficiency matrix, one group work
- Better precisions
- Systematics is an issue, open question
- Very convenient for machine learning, ...

Efficiency matrix from machine learning

Different approaches

- Usually the DBT used for event classification with handengineering variables
- Recently various approaches: DNN, CNN, RNN, ...
- Graph Neural Network (GNN) will be used
 - Better inductive bias
 - Using particle level information as input
 - No jet-clustering
 - No lepton/photon isolation

Energy Flow Network

JHEP01(2019)121

CALL particle level information as input: 4-momenta, impact parameters, and PID

No jet-clustering, no isolation of leptons and photons

- No requirement on input size
- No explicitly dependence on the ordering of the inputs
- Respect the permutation symmetry

Infra-red and collinear safety naturally achieved

The key mathematical fact: A generic function of a set of objects can be decomposed to arbitrarily good approximation in a practical and intuitive way [arXiv:1703.06114]

$$\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^M \Phi(p_i)\right)$$

Inputs: $e^+e^- \rightarrow ZH, Z \rightarrow l^+l^-, qq$

- 100 k evts for each 9 Higgs decays: cc, bb, μμ, ττ, gg, γγ, ZZ, WW, γZ
- Train: validation: test = 8:1:1
- Fast simulation
 - momenta of tracks and energies of neutrals smeared according to CEPC_v4
 - Ideal PID and Impact parameters
- No SM backgrounds taken into account

Some preliminary results

eeH

au au H

qqH

With the efficiency matrix and n_i

- The $\chi^2 = \chi^2_{ee} + \chi^2_{\mu\mu} + \chi^2_{\tau\tau} + \chi^2_{q\bar{q}}$ is going to be minimized to extract 9 branching ratios
- This part is ongoing ...

From the point view of detector optimization, a parameterization of performance as simple as possible is desired

The determinant of efficiency matrix |E| is a good candidate

$$P = f(\sigma_p, \sigma_{E_\gamma}, PID, JID, JER, \ldots)
onumber \ = |E|^2 \propto rac{1}{|\Sigma_B|^2}$$

Problem successfully becomes how to Maximize |E|

The efficiency matrix

- No dependence on the branching fractions of Higgs decays in MC
- Make use of full confusion matrix information
- one single parameter, det |E|, quantifies the detector performance

Single purpose optimization instead of a bunch of benchmarks Useful for detector optimization

$$\Sigma_B \propto rac{1}{|E|^2}$$

Summary and plan

• A proof-of-principle study shows

- Global analysis improves the precision
- ML method used to get the efficiency matrix, using particle level information as input
- Confusion matrix as a metric for optimization
 - ✓ Its determinant is a single parameter and easy for optimization

Plan

- More validations
- Realize the minimization of 4 combined process
- Taking SM backgrounds into account
- Apply it in detector optimization

The end

Thanks a lot

The detector performance dependence on E/p/PID/impact parameters

Discussion on the results

- $\mu\mu$, $\tau\tau$, and $\gamma\gamma$ best performance
 - Bonus: $\tau\tau$ as good as $\mu\mu$
- ZZ not as good as others as expected
- Confusion among di-jets, WW, and ZZ
 - gg fakes cc since gluon more likely splits into cc than bb
 - gg also fakes WW, ZZ hadronic decays
- γZ rather good

Termnologies

- Tagging efficiency: accuracy in ML
- ROC : Receiver Operating Characteristics Curve, mainly for binary classification,
 - In HEP it is Rejection rate vs. Tagging efficiency (FN rate vs. TP rate)
- AUC : Area under the ROC
- Confusion matrix
 - it is the efficiency matrix when neglecting SM backgrounds

		Actual Classes			
		POSITIVE	NEGATIVE		
I Classes	POSITIVE	TRUE POSITIVE (TP)	FALSE POSITIVE (FP)		
Predicted	NEGATIVE	FALSE NEGATIVE (FN)	TRUE NEGATIVE (TN)		

Common collider observables decomposed into per-particle maps Φ and functions F

Observable \mathcal{O}		$\mathbf{Map}\Phi$	Function F
Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Multiplicity	M	1	F(x) = x
Track Mass	m_{track}	$p^{\mu}\mathbb{I}_{ ext{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Track Multiplicity	M_{track}	$\mathbb{I}_{ ext{track}}$	F(x) = x
Jet Charge [72]	\mathcal{Q}_{κ}	$(p_T, Q p_T^\kappa)$	$F(x,y) = y/x^{\kappa}$
Eventropy [74]	$z\ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$
Momentum Dispersion [93]	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$
C parameter [94]	C	$(ert ec p ert, ec p \otimes ec p / ec p ec))$	$F(x,Y) = \frac{3}{2x^2} [(\operatorname{Tr} Y)^2 - \operatorname{Tr} Y^2]$

Detector design & Optimization

Multi-purpose optimization: a bunch of benchmarks — A single parameter is favored, single-purpose optimization