Multilepton Searches for Heavy Neutrino at the Higgs Factory

高宇 (Yu Gao)

粒子天体物理重点实验室 高能物理研究所

CEPC Physics, Detector & SW 扬州, 2021.4

Outline

- Remarks on seesaw
- Heavy N opportunities @ ee
- Same-Sign multiple leptons a probe for Higgs mixing

Y.Gao, K.Wang, 2102.12826

Y.Gao. M.Jin. K.Wang. 1904.12325 A.Das. Y.Gao. T.Kamon 1704.00881

Seesaw and mixings

mixing

Type -I
$$\mathcal{L}_N = -\overline{L} Y_{\nu}^D \tilde{H} N_R - \frac{1}{2} \overline{(N^c)}_L M_R N_R \qquad \frac{y_D v_0}{\sqrt{2} M_R}$$

+ hybrids, inverse seesaw, radiative, etc.

Spotting a Majorana heavy N

 W^{-} u \overline{d} `smoking' gun same-sign *lljj* from a W(*) $\rightarrow lN$ system, $m_{lii} \sim m_N$ $\mathcal{L}_{\text{Int.}} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \left(\sum_{m=1}^3 \overline{\nu_m} \, U^*_{\ell m} + \sum_{m'=1}^n \overline{N^c_{m'}} \, V^*_{\ell N_{m'}} \right) \gamma^{\mu} P_L \ell^ -\frac{g}{2\cos\theta_W}Z_{\mu}\sum_{\ell=a}^{\tau}\left(\sum_{m=1}^{3}\overline{\nu_m}\,U_{\ell m}^*+\sum_{m'=1}^{n}\overline{N_{m'}^c}\,V_{\ell N_{m'}}^*\right)\gamma^{\mu}P_L\nu_\ell$ $-\frac{g}{2M_W}h\sum_{\ell=1}^{\tau}\sum_{\ell=1}^{n}m_{N_{m'}}\overline{N_{m'}^c}V_{\ell N_{m'}}^*P_L\nu_{\ell} + \text{H.c.}$

Heavy neutrino production

Single N production via v-N mixing.

effective couplings $\propto |V_{lN}|^2$

NN pair production via N_R couplings

 \propto scalar mixing $|\sin \alpha|^2$

 $\mathcal{L} \supset V(\Phi) + V(S) + \lambda |\Phi|^2 S^2$ $+ y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + c.c.$

 y_D is suppressed by active v mass y_N is **not**.

Heavy N @ ee: Single N at Z-pole

 $e^+e^- \rightarrow Z \rightarrow l \nu j j$, COM energy @ Z mass pole

similar sensitivity reach for $V_{\mu N}$ J.-N. Ding, Q.Qin, F.-S.Yu, 1903.02570

Heavy N @ ee: Single N reach

 $N \rightarrow lW$ 0.04 100fb^{-1} 0.035 500fb⁻¹ **a** 0.03 $1ab^{-1}$ 0.025 5ab⁻¹ 0.02 0.015 0.01 0.005 220 240 120 140 160 180 200 m_N(GeV) $\nu_l = \sum_i U_{li}\nu_i + \sum_i R_{lN_j}N_j$ W.Liao, X.-H.Wu, 1710.09266

Heavy N @ ee: Beam Polarization

Polarized e^+e^- beam can enhance sensitivity to W_R mediated N production (L-R model)

S.S.Biswal and P.S.B.Dev, 1701.08751

Heavy N @ ee: Displaced vertex (long-lived N)

95% non-observation of a single DV, 5ab⁻¹

95% non-observation of two DVs, 5ab⁻¹

At fixed prod. rate $M_{h_2} = 450 \text{ GeV}, \quad \sin \alpha = 0.3$

Gray: 0.01 eV $< m_{\nu} = V_{\mu N}^2 m_N < 0.3$ eV

 $e^+e^- \to Z \to Zh_1 \to Z + NN$

F.F.Deppisch, W.Liu, M.Mitra, 1804.04075

Heavy N @ *ee: W,Z,h rare decays (via* V_{lN} *)*

Z decay @ ee

Optimized at Z pole. $|V_{eN}|^2$ down to ~ 10⁻⁸.

W decay @ pp (LNV) $W^{\pm} \to e^{\pm} e^{\pm} \mu^{\mp} \nu$ $Br = \overline{Br} \times |U_{Ne}|^4 / (\sum_{\ell} |U_{N\ell}|^2)$ 10¹¹ W @ pp, 3ab⁻¹ 0.004 0.003 Br 0.002 0.001 0.000 80 10 20 30 40 50 60 70 m_N [GeV] C.O.Diba, C.S.Kim, 1509.05981

 $h \rightarrow v N @ ee$ S.Antusch, O.Fischer, 1502.05915 10-1 10^{-2} $\theta_e^2 + \theta_\mu^2 + \theta_\tau^2$ - LHC: $h \rightarrow \gamma \gamma$ ---- ILC --- CEPC 10 - FCC-ee 10^{-4} 80 20 40 60 100 120 M [GeV] @pp, top, VV bkgs are significant.

gg $\rightarrow h \rightarrow v N$ search needs an **ISR kick** A.Das, Y.Gao, T.Kamon, <u>1704.00881</u>

 $h \rightarrow l^{-}l'^{+}$ flavor violating decays @ee see Q.Qin, Q.Li, C.-D.Lu, F-S.Yu, S.-H.Zhou, 1711.07243

Heavy N @ pp: Higgs mixing (with scalar)

- Assuming the Higgs is the only visible scalar.
- Can h→ NN probe the h-s mixing to tiny levels? -- 'small coupling'

 $\sin^2 \alpha \ll 1,$ $\lambda \cdot \max(v_S^2, v_{\Phi}^2) \ll \min(m_s^2, m_{\phi}^2).$

• Mostly decoupled Φ , S sectors if the mixing terms are small.

pp limit, Y.Gao, M.Jin, K.Wang, 1904.12325

$$\mathcal{L} \supset V(\Phi) + V(S) + \frac{\lambda}{2} |\Phi|^2 S^2 + y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + \text{c.c.}$$

Heavy N @ pp: Higgs mixing (with scalar)

- Assuming the Higgs is the only visible scalar.
- Can h→ NN probe the h-s mixing to tiny levels? -- 'small coupling'

 $\sin^2 \alpha \ll 1,$ $\lambda \cdot \max(v_S^2, v_{\Phi}^2) \ll \min(m_s^2, m_{\phi}^2).$

• Mostly decoupled Φ , S sectors if the mixing terms are small.

pp limit, Y.Gao, M.Jin, K.Wang, 1904.12325

$$\mathcal{L} \supset V(\Phi) + V(S) + \frac{\lambda}{2} |\Phi|^2 S^2 + y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + \text{c.c.}$$

How about using $ee \rightarrow Zh$ at Higgs Factory?

NN via Higgs Decay @ ee

1.How small an *h*-s mixing can CEPC probe? (sensitivity on $|\sin\alpha|^2$, complementary to $|V_{lN}|^4$)

2. Are LNV (& alikes) events truly background free?

10⁶ Higgs events @ cleaner ee vs HL but dustier pp

ee: no fake leptons from soft jets, yet lower Higgs count, & extra Z boson

A minimal setup

$$\Delta \mathcal{L} \supset -y_D \bar{L} \tilde{\Phi} N_R - y_S S \overline{N_R^c} N_R + c.c. + \lambda |\Phi|^2 S^2 + V_S.$$

 $\begin{array}{ll} \text{Small coupling:} & \lambda v_{\Phi} v_S \ll m_h^2, m_s^2 & \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ s \end{pmatrix} \\ \text{\& neglecting } |\Phi|^2 \text{S terms} \end{array}$

$$\sigma_{\text{sig.}} = (\sigma_{h_1} \cdot \text{BF}_{h_1 \to NN} + \sigma_{h_2}) \cdot \text{BF}_{\text{sig.}} A_{\text{eff}}$$
$$\Gamma(h_1 \to NN) = \frac{1}{2} \sin^2 \alpha \cdot \frac{y_N^2 m_{h_1}}{8\pi} \left(1 - \frac{4m_N^2}{m_{h_1}^2}\right)^{3/2}$$

Both $h_1 \rightarrow NN$ branching and $\sigma(h_2)$ scale ~ $|\sin\alpha|^2$ $h_2 \rightarrow NN$ branching ~ 100% if $|V_{IN}|^2$ is small

ee@240 GeV: ignore ee \rightarrow Zh₂ as COM energy is limited

NN: Semileptonic, fully leptonic & mixed decays

NN@ee : SM backgrounds

1. Intrinsic backgrounds

Randomly flavored leptons emerges from W/W*. i.e W & tau decays.

 $\tau^+\tau^-\tau^+\tau^-,\ \tau^+\tau^-\tau^+\tau^-Z,\ \tau^+\tau^-W^+W^-.$

2. Missed leptons (& wrong signs)

 $\tau^+\tau^-Z$, l^+l^-Z , $\tau^+\tau^-l^+l^-Z$, $l^+l^-l^+Z$, $l^+l^-W^+W^-$

up to 2 weak bosons for 240 GeV. τ decay may yield jets. N decay jets are soft. Leptonic Z decay may contribute to N_l and SS 6τ , 6l channels are not independent. Signal strategy:

Assume $Z \rightarrow jj$ (more jets) Require SS leptons Strict lepton charge & count cuts Categorize on N_l: 2-4 visible leptons with flavor-distinguishable SS pairs

21 channel: SS dilepton $+(\geq 3)$ jets

Y.Gao, K.Wang, 2102.12826

(i) exactly two leptons, $N(\ell) = 2$ with $p_T(\ell) > 5$ GeV;

- (ii) two leptons have the same sign;
- (iii) veto τ leptons, $N(\tau) = 0$;
- (iv) at least three jets, $N(j) \ge 3$;
- (v) small missing energy, $\not\!\!\!E_T < 15$ GeV.

MG5+Pythia8+Delphes CEPC card

C.Chen, et.al. 1712.09517

Bkg @ 5.6 ab⁻¹

Signal ~10% eff. w lepton cuts ~2% sig. eff. at N_{bkg}~1 level

3l channel: SS dilepton $+l'+(\geq 2)$ *jets*

Y.Gao, K.Wang, 2102.12826

(i) exactly three leptons $N(\ell) = 3$ with $p_T \ge 5$ GeV;

- (ii) veto OSSF lepton pairs;
- (iii) veto τ leptons, $N(\tau) = 0$;
- (iv) at least two jets, $N(j) \ge 2$.

Bkg @ 5.6 ab⁻¹

O(1%) sig. eff. at N_{bkg}~1 level

31 channel's Bonus: SS trilepton

Z decay yield 'correct'-sign lepton if its 'incorrect'-sign company goes missing

SS-trilepton post- lepton cuts (w/o jet cuts):

SM bkg ~ 0.1% of 3l channel after cut (ii)

Clean channel, yet signal yield is also smaller.

4l channel: two SS dileptons $+(\geq l)$ *jets*

0.1	5	0.2			initial	$\operatorname{cuts}(i)$	cuts(ii)	cuts(iii-iv)
Fraction / 5 GeV	1 5 5 5 5 5 5 5 5 5 5 5 5 5	S: 20 GeV S: 20 GeV S: 30 GeV S: 40 GeV S: 50 GeV S: 50 GeV S: 60 GeV S: 60 GeV	Sig.	$10 \mathrm{GeV}$	10^{3}	15.9	1.1	0.71
				$20 \mathrm{GeV}$	10^{3}	17.5	1.1	0.72
				$30 \mathrm{GeV}$	10^{3}	22.1	1.3	0.80
				40 GeV	10^{3}	26.8	1.5	0.98
				$50 \mathrm{GeV}$	10^{3}	30.1	1.8	1.2
				$60 \mathrm{GeV}$	10^{3}	32.1	2.1	1.3
	50 50 100 0	50 50 100 $p(l_{0})$		4 au	1.69×10^{4}	58.4	6.8	-
Fraction / 5 GeV	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	P _T √2/ S: 10 GeV S: 20 GeV S: 30 GeV	Bkg.	$^{\dagger}2\tau Z$	6.80×10^5	2.26×10^3	9.6	-
				$^{\dagger}2\ell Z$	1.74×10^6	7.28×10^4	-	-
				$4\tau Z$	93.0	0.45	6.4×10^{-3}	2.8×10^{-3}
		LO S: 40 GeV		$2\tau 2W$	4.42×10^3	1.3	0.17	-
		⊆ S: 60 GeV - □ 0.2 total B		$^{\dagger}2\ell 2\tau Z$	584	13.8	1.0×10^{-2}	3.2×10^{-3}
				$^{\dagger}4\ell Z$	862	116	7.8×10^{-4}	-
				$^{\dagger}2\ell 2W$	2.74×10^4	217	-	-
	$p_{\tau}(l_3)$ 20 40 60	⁵ 0 20 40 ρ _τ (<i>l</i> ₄)				$N_{i}=4$	Two SS	jet

Y.Gao, K.Wang, 2102.12826

(i) exactly four leptons, $N(\ell) = 4$ with $p_T(\ell) \ge 5$ GeV;

(ii) exactly two electrons with the same charges; exactly two muons with the same charges; electrons and muons have opposite charges; i.e. exactly $e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$ lepton pairs;

(iii) veto τ leptons, $N(\tau) = 0$;

(iv) at least one jet, $N(j) \ge 1$.

N_l=4 Two SS jet dileptons cuts (for sensitivity)

~10 bkg events w two SS dileptons @5.6 ab⁻¹

lofty cost: sig. eff ~ 0.1%

Mixing angle reach @ ee (CEPC)

ee @ 240 GeV, 5.6ab⁻¹:

$$|\sin\alpha|^2 < 10^{-4}$$
 sensitivity
for y_s ~ O(1)
comparable to HL-LHC

$$|\sin \alpha \cdot y_S|^2 = \mathrm{BR}(h_1 \to NN) \cdot 16\pi \frac{\Gamma_{h_1}}{m_{h_1}} \left(1 - \frac{4m_N^2}{m_{h_1}^2}\right)^{-3/2}$$

- 1. Heavy N as a good probe for Higgs seesaw scalar mixing $|\sin \alpha|^2$ @ee
- 2. $|\sin\alpha|^2 \sim 10^{-4}$ for CEPC @ 240 GeV, 5.6 ab⁻¹, comparable to HL-LHC
- 3. SS dilepton bkg not neglectable. Lofty loss on signal if assuming $N_{bkg} < 1$.
- 4. $Z \rightarrow ll$ yield a bonus SS trilepton signal @ ee