Simulation Study of fourth conceptual drift chamber

Shuiting Xin,Linghui Wu,Guang Zhao, Mingyi Dong,Shengsen Sun,Gang Li April 16,2021 Yangzhou, CEPC workshop

Outline

- The fourth concept tracker
- Principle of a drift chamber
- Optimization

The fourth concept tracker

- Good momentum/impact resolution
- Excellent PID, better than 2s separation of p/K at momentum up to ~20 GeV.

Physics process	Measurands	Detector subsystem	Performance requirement
$\begin{array}{c} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b}/c \bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\begin{aligned} \sigma_{r\phi} &= \\ 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m}) \end{aligned}$
$H \rightarrow q \bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\begin{array}{l} \Delta E/E = \\ \frac{0.20}{\sqrt{E({\rm GeV})}} \oplus 0.01 \end{array}$

- Silicon Vertex + Silicon Tracker for momentum measurement
- Drift chamber : have sufficient PID power

Introduction

Drifter Chamber

Aim to provide PID capability other than silicon tracker

- CEPC physics
 - ◊ 2-sigma separation of k/pi would be appreciate

A desired detector

- Suitable gain and drift velocity(choice of gas)
- Stability(choice of quencher)
- In optimized Size(A balance on PID performance and tracking measurement)

Principle of drift chamber

Ionization measurement.

- \diamond A charged particle passing through the gas ionizes a few gas molecules
- Electrons from ionization move in the electric field and are multiplied around the anode wire
- the movement of electrons and ions result in induced currents in the anode wire
- Function of drift chamber
 - ♦ For tracking
 - Calculating space position by measuring the drift time.
 - ♦ For particle identification
 - Traditionally it is implemented by energy loss(dE/dx)
 - Possibly better PID performance by measuring primary ionizations(dN/dx)

Principle of dE/dx measurement

The average energy loss is described by Bethe-Bloch formula

$$-rac{dE}{dx}=Kz^2rac{Z}{A}rac{1}{eta^2}iggl[rac{1}{2}{
m ln}\,rac{2mc^2eta^2\gamma^2T_{
m max}}{I^2}-eta^2-rac{\delta(eta\gamma)}{2}iggr]$$

- Mass of a charged particle is exploited by knowing energy loss for a certain momentum.
- ✤ The differential cross-section has a $1/E_i^2$ shape if E_i lager than E_K .

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_i}
ightarrow \frac{2\pi r_{\mathrm{e}}^2}{\beta^2} \frac{mc^2}{E_i^2} (E_i \gg E_{\mathrm{K}}) \implies \text{large energy electrons}(\delta \text{ electrons}) \text{ sometimes}$

- The energy loss is a statistical process involving
 - ♦ Fluctuations of number of primary electrons -> poisson distribution
 - ♦ Fluctuations of transferred energy δE_i

Together result in Landau distribution

 $dE = \sum \delta E_i$

Principle of dN/dx measurement

- Instead of measuring charge, if counting on primary electrons
 - Number of pluses -> number of primary electrons
 - ♦ Uncertainly is number fluctuations
 - Pure poisson statistics that less fluctuation

Comparing dN/dx with dE/dx

- ♦ 10GeV pion/kaon in 90%He,10%iC4H10 gas, truncated mean is applied for dE/dx
- ◊ dN/dx achieves better resolution and better k/pi separation

Optimized parameters

- ✤ Gas fraction of two component, He and iC4H10
 - Why He: less primary ionization so that low cluster density making pluses separatable
 - Why Quencher: to absorb photons produced by charged particle and He atom collision. Choosing iC4H10

Number of layers

- ♦ Although PID performance is improved with more layers.
- ♦ Worsen the space resolution of a track.

Mixture gas component

Ionization level information simulated by Garfield++

- ♦ 3 gas mixture -> no big difference between 50% and 70% in separation plot.
- ♦ The fit curve follows $1/\sqrt{N}$ relation
- Above 10GeV, separation of 90%He is better than with 50%He, and 90%He is beneficial for cluster counting.

Size of DC: tracking

- ♦ Investigating momentum resolution using FastTrkSim
- ♦ Tracker geometry configurations
 - ♦ Outer R of DC is fixed to be 1.8m, one layer of silicon tracker outside of DC (R=1.8m)
 - ♦ Keep vertex detector same as before (3 double-sided layers)
 - N layer of silicon tracker between vertex detector and DC with equal spacing (N=3,4,5)

- ♦ Reducing size of DC could improve momentum resolution significantly.
- ♦ Best momentum measurement at inner_ R_{DC} = 0.8 ~ 1m (i.e. 80 ~100 layers)

Size of DC :PID

A full simulation including signal induction, response of pre-amplifier and white noise is performed. Details in <u>Guang's talk</u>

Fast simulation

- ♦ Apply a Ncluster dependent efficiency to simulation. Estimated from fixed Ncluster samples.
- ♦ Slightly different with full simulation. Further Investigation on this model undergoing

Summary and Outlook

- The working gas is chosen to be 90%He to meet the requirement at high momentum
- Momentum resolution can be improved significantly by reducing size of DC. 100 layers might be better
- Drift chamber with 100 layers (0.8m ~ 1.8m)
 - \diamond can reach up to 2σ K/p separation at 15 GeV
 - \diamond 1.5 σ K/p separation at 20 GeV
- Need further validation and optimization.

Backup

