Progress and planning of TPC technology R&D for CEPC

Huirong Qi

ZhiYang Yuan, Yiming Cai, Yue Chang, Zhi Deng, Yulan Li, Hui Gong, Wei Liu

Institute of High Energy Physics, CAS

Tsinghua University

Joint Workshop of CEPC , April, 15, 2021

Outline

Motivation
TPC module R&D
TPC prototype R&D
Plan and summary

Overview of TPC concept

TPC detector concept:

- Under 2-3 Tesla magnetic field (Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- dE/dx resolution: <5%</p>
- ~100 μm position resolution in rφ
 - ~60µm for zero drift, <100µm overall
 - Systematics precision (<20µm internal)
- **D** TPC material budget
 - <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- **2-hit resolution in rφ : ~2mm**
- □ Module design: ~200mm×170mm
- Minimizes dead space between the modules: 1-2mm

- 3 -

Motivation of TPC

TPC critical R&D for Z

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve the high spatial resolution (<100um in all drift length), small pads (e.g.1mm×6mm) are needed, resulting ~1million channels of readout electronics
- Need low power consumption readout electronics working at continuous mode
- Need effectively reduce ions

Momentum resolution (B=3.5T)	$\delta(^1/p_t \approx 10^{-4}/GeV/c)$
δ_{point} in $r\Phi$	<100 µm
δ_{point} in rz	0.4 - 1.4 mm
Inner radius	329 mm
Outer radius	1800 mm
Drift length	2350 mm
TPC material budget	$\approx 0.05 X_0$ incl. field cage < $0.25 X_0$ for readout endcap
Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$
2-hit resolution	$\approx 2 \text{ mm}$
Efficiency	>97% for TPC only ($p_t > 1GeV$) >99% all tracking ($p_t > 1GeV$)

Spatial resolution VS magnetic field

Overview of two readout options

Pad TPC and Pixel TPC

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout
 GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 10⁶ Pads
 - 84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

Pixel TPC for collider

track of high energetic particle Cathode Econo pillars readout pads

For Collider @cost: But to readout the TPC with GridPixes:

→100-120 chips/module 240 modules/endcap (10 m^2) →50k-60k GridPixes

 $\rightarrow 10^9$ pixel pads

Benefits of Pixel readout:

- Lower occupancy
- $\rightarrow 300~k$ Hits/s at small radii.
- \rightarrow This gives < 12 single pixels hit/s.
- \rightarrow With a read out speed of 0.1 msec (that
- matches a 10 kHz Z rate)
- \rightarrow the occupancy is less than 0.0012
- Improved dE/dx
 - \rightarrow primary e- counting

 Smaller pads/pixels could result in better resolution!

- **Gain** <2000
- Low IBF*Gain<2</p>
- $\Box \quad CO_2 \text{ cooling}$

TPC module R&D

TPC detector module@ IHEP

Study with GEM-MM module

- New assembled module
- Active area: 100mm × 100mm
- **X-tube ray and 55Fe source**
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM:128μm
- Transfer gap: 2mm
- Drift length:2mm~200mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- **Standard Mesh: 400LPI**
- High mesh: 508 LPI
- Pixel option for the consideration in 2020

DOI: 10.1088/1748-0221/12/04/P0401 JINST, 2017.4
DOI: 10.1088/1674-1137/41/5/056003, CPC,2016.11
DOI: 10.7498/aps.66.072901Acta Phys. Sin. 2017,7
DOI: 10.1142/S2010194518601217 (SCI) 2018
DOI: 10.1088/1748-0221/13/04/T04008 (SCI) 2018
DOI: 10.1007/978-981-13-1316-5_20 (SCI) 2018

GEM-MM detector cathode

GEM+MM

Micronegas + GEM detector module @IHEP

IBF×Gain ratio can meet less than 2 at the lower gain under two mixture gases
 Lower gain and lower IBF ratio

UV test of the new module

- UV lamp measurement
 - New designed and assembled UV test chamber
 - Active area: 100mm × 100mm
 - Deuterium lamp and aluminum film
 - Principle of photoelectric effect
 - Wave length: 160nm~400nm
 - Fused silica: 99% light trans.@266nm
 - Improve the field cage in drift length

X2D2 lamp

UV test geometry with GEM-MM

Diagram of the UV test with new module

IBF suppression R&D

- **UV** lamp measurement
 - Added a new voltage controller
 - □ pA current meter from Keithley
 - First step test about the current in mesh
 - □ E_drift: 10~175V/cm
 - □ ~43pA@175V/cm
 - □ Stable current with UV light
 - □ ~200V/cm@T2K operation gas

实验装置图

Space charge effect at the different gain

lons per UV light pulse (fC/cm²)

- **Preliminary estimation of the high luminosity Z**
- There are more safe factor when the detector will run at the lower gain (eg.2000-3000)

Different concepts with IBF suppression

Pixel TPC with double meshes	Triple or double GEMs	Resistive Micromegas	GEM+ Micromegas	Double meshes Micromegas
IHEP, Nikehf	KEK, DESY	Saclay	IHEP	USTC
Pad size: 55um-150um square	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm (If resistive layer)
Advantage for TPC: Low gain: 2000 IBF×Gain: -1	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain:5000- 6000 IBF×Gain: <5	Advantage for TPC: High gain: 10^4 Gain: 5000-6000 IBF×Gain: 1-2
Electrons cluster size for FEE: About Ø200um	Electrons cluster size for FEE: About Ø5mm	Electrons cluster size for FEE: About Ø8mm	Electrons cluster size for FEE: About Ø6mm	Electrons cluster size for FEE: About Ø8mm
Integrated FEE in readout board Detector Gain: 2000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000

TPC prototype R&D

TPC Prototype sketch

- Main parameters
 - □ Same test parameters in CEPC
 - Drift field=200V/cm
 - Relative gain: ≥2000
 - Readout pad(anode) is designed to 0V (Ground)
 - TPC detector system: Fieldcage+ Pads readout
 - Working mixture gas:
 - \Box Ar/CF₄/iC₄H₁₀=95/3/2
 - □ Same purity
 - Specific prototype parameters
 - Drift length: ~500mm
 - Active area: 200mm²
 - Integrated 266nm laser beam
 - MPGD detector as the readout
 - TPC cathode: -10kV
 - Readout Pads: 1280 channels

TPC prototype

Laser map in X-Y direction

Laser map along drift length

- 16 -

Electronics and DAQ

- Amplifier and FEE
 - CASAGEM chip
 - □ 16Chs/chip
 - 4chips/Board
 - Gain: 20mV/fC
 - □ Shape time: 20ns

DAQ

- **• FPGA+ADC**
- 4 module/board
- 64Chs/module
- □ Sample: 40MHz
- **1280chs**

FEE Electronics and DAQ setup photos

Status of TPC prototype

- Detector prototype was done and working well
- Commissioning: Huirong Qi, Zhiyang Yuan, Yiming Cai, Yue Chang, Jiang Zhang, Yulan Li, Zhi Deng
- Data taking: the same, plus: Hongyu Zhang, Ye Wu
- Data taking and more analysis on going

TPC prototype in the lab

- □ The origin of the coordinate is set at the center of the endplate board.
- **X** and **Y** plan is set as the readout plane
- **Z** is set along the drift length from endplate to the cathode
- \Box Z₀ plane is set at the first surface of the detector from cathode to endplate plane.
- The center of the pad is set as the pad's coordinate, and every pad has the specific x and y.

Laser tracks in chamber@T2K gas

- □ Same of working gas@T2K, same of high voltage, same of test conditions
- **Different of GEMs@ 320V**
- **Triple GEMs to double GEMs**
- No discharge

Drift time @400MHz

Drift time of the electron at 150V/cm in T2K

Drift velocity

Drift velocity of the electron at 150V/cm in T2K

PRF analyzing of the spatial resolution (update)

Pad Response Function (PRF): a function used to describe the charge distribution and to determine the hit position via Pad

$$PRF(x,y,w) = rac{e^{-4ln2(1-y)x^2/w^2}}{1+4y\cdot x^2/w^2}$$

- x is the Pad's coordinate of the center of the corresponding Pad in x-aixs.
- □ y is a factor to describe Lorentzian and the Gaussian function
- w is the width of the Pad (in here, the Pad's width is 0.9 mm)

Space resolution at the different drift length

- 24 -

Drift velocity measurement

- Two weeks of continuous testing (Data of $E_{drift} = 220V/cm$ is still taking)
- **Room temperature recorded**
- Comparison of the drift velocity and the temperature
- Simulation of some influencing factors using Garfield/Gariflield++ software

Conclusion: 266nm UV laser can work well when it can be as the online monitor option.

Plan studies of TPC prototype more studies are ongoing... dE/dx track distortion gain uniformity and ...

Current TPC readout ASICs

- Waveform sampling (8-10 bit, ~10MS/s) is required for TPC signal processing
- Direct ADC sampling is more preferable than SCA for high rate applications
- Lower power consumption \rightarrow less cooling \rightarrow less material

	PASA/ALTRO	AGET	Super-ALTRO	SAMPA
TPC	ALICE	T2K	ILC	ALICE upgrade
Pad size	$4x7.5 \text{ mm}^2$	$6.9 \text{x} 9.7 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
Pad channels	5.7 x 10 ⁵	1.25 x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM
Gain	12 mV/fC	0.2-17 mV/fC	12-27 mV/fC	20/30 mV/fC
Shaper	$CR-(RC)^4$	$CR-(RC)^2$	$CR-(RC)^4$	CR-(RC) ⁴
Peaking time	200 ns	50 ns-1us	30-120 ns	80/160 ns
ENC	385 e	850 e @ 200ns	520 e	482 e @ 180ns
Waveform Sampler	ADC	SCA	ADC	ADC
Sampling frequency	10 MSPS	1-100 MSPS	40 MSPS	20 MSPS
Dynamic range	10 bit	12 bit(external)	10 bit	10 bit
Power consumption	32 mW/ch	<10 mW/ch	47.3 mW/ch	8 mW/ch
CMOS Process	250 nm	350 nm	130 nm	130 nm

New electronics commissioning

- A 16 channels low power consumption readout
 ASIC chip for TPC readout have been developed
 - □ The power consumption is 2.33 mW/channel
 - \square P_{AFE} = 1.43 mW/channel
 - \square P_{ADC} = 0.9 mW/channel @ 40M/s
 - ENC =852e @Cm = 2pF, gain =10 mV/fC and can be reduced to 474e using digital trapezoidal filter

• Future studies

- More ASIC evaluations: Higher sampling rate, more detailed noise test, test with detectors ...
- Low power digital filter and data compression in FPGA/ASIC
- Commission of ASIC chip board and the detector to test in the laboratory

Detector and ASIC

Summary

- Some motivations of TPC detector for the circular collider at high luminosity listed.
- Some update results of TPC module have been studies, it can effectively reduce ions at the low gain without the space charge and the discharge.
- Some update results of TPC prototype have been studies, the prototype is working well, and the results indicated that 266nm UV laser beams system will be very useful in the TPC prototype R&D.
- The detector module will assembled and commissioned with the low power consumption ASIC chip in this year.

Thanks for your attention.