

ACTS Studies at CEPC

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Chen Yebo, Han Yubo, Li Gang, <u>Zhang Jin</u>, Zhu Hongbo April 16, 2021 Yangzhou, China

> Motivations

> Studies in Acts standalone framework

>Integration Status to CEPCSW

≻Summary and Next

ACTS Motivation

- LHC Run-1/2 exceeded all expectations in terms of provided data
 - Design pile-up ~21 for Run-1 and ~40 for Run-2
 - Track reconstruction worked extremely well
- HL-LHC will bring great challenges to computing in track reconstruction

Keep physics performance && Tackle computing resource problem for future LHC era

A review of ACTS : A Common Tracking Software

Derived from ATLAS, driven by the core idea to become A Common Tracking Software

- > Encapsulating the well-tested ATLAS tracking code high performance in the past
- Independent from detectors and framework

Modern technologies

- > Deal with the CPU problem in dense tracking environment
- ➤ Generic programming with C++17
- Thread-safety design and efficient memory allocation
- > Active group for the developing
 - Potential to become the future ATLAS tracking software
 - Other experiments are also trying
 - > BELLE-2, sPHENIX, FASER, CEPC ... *

CEPC Tracking System and Requirements

- > Three CEPC detector concepts
 - > Baseline detector (silicon + TPC)
 - Full silicon detector
 - Reference detector (silicon + drift chamber)
- Requirement of an accurate and efficient tools for detector studies
 - Flexibility in layout optimizations and material studies
 - Evaluating the performances of different designs
 - > With the potential of becoming the future tracking software

Tote 10 cm

ACTS Tracker Studies at CEPC CDR Baseline Tracker and Full Silicon Tracker Layout study of the 4th concept detector

Detector studies at standalone framework

Implementation

Baseline tracker

and built with XIVIL file

- Flexible to change the detector parameters
- Easy to integrate to CEPCSW
- > Propagation and Material mapping
 - Particle motion in Tracking Geometry
 - Map complex original material onto simplified Surface/volume

Baseline Tracker Performance Study

➢ FATRAS

- > Particle gun: 800,000 single μ^- from (0, 0, 0)
- > Magnetic field: (0, 0, 3T)
- > p_T : 100GeV, θ : 85°, φ : uniform distribution

➤ Kalman Filtering

> Pull distribution tests of track parameters

Baseline tracker

Reference Detector Layout Study

4th Concept Detector

- > 4th Concept detector
 - Silicon Tracker for momentum and Vertex measurement
 - Drift Chamber for PID
 - Solenoid magnet between HCAL and ECAL
 - Transverse crystal bar ECAL optimised

Tracking Geometry and Material in ACTS

Reference Detector Geometry

Material budget validation(only barrel region)

Reference Detector geometry is constructed and material budget is validated with Geantino

Reference Detector Layout Study

4th Concept Detector

- Resolution of vertex and momentum
 - Muon, θ=90°
 - Measurements: without material
 - Combined: with material

Roughly consistent results with other simulation

Preliminary Integration to the CEPCSW

From Standalone framework to CEPCSW

Geometry Building Tools Integration

- Three basic detectors are built
 - Generic Detector ACTS c++ detector
 - DD4hep Detector
 - Demonstrator a single silicon layer to check dd4hep geometry building and acts extension
 - FullSilicon detector tracking performance validation and comparing
- Acts Tracking Geometry now constructed correctly
- Json Writer is available to write out geometry and material

Demonstrator : a single layer detector

Propagation Integration

Propagation - Particle motion in Tracking geometry

- RandomSeed to Generate virtual tracks
- Propagation tool to extrapolate tracks in FST2 Detector and record sensitive/material detectors
- Output of all sensitive/material positions shows sensible results

FATRAS (Fast Simulation) Integration

FATRAS - Fast simulation based on the ACTS propagation tool

- GtGunTool as Generator, PodioOutput root file
- Read "MCParticle" from PodioInput root file
- Record all simulated particles and hits

t_y:t_x {sensitive_id && abs(t_z)<10 && sqrt(t_y*t_y+t_x*t_x)<200 }

Preliminary results show reasonable Propagation and FastSim Algorithm

Kalman Filtering Integration

- Kalman fitting Algorithm Chain is implemented in CEPCSW
 - FATRAS is used as the input of
 - HitSmearing : measurement error are taken into consideration
 - TruthTrackFinding : create prototracks with with simulated particles and hits
 - Particle smearing : initial parameters smearing and initial covariance matrix

Kalman fitting is integrated to CEPCSW, results are under validation

Summary and Next

• Summary

- ACTS shows reasonable results from CEPC detector studies
- For CEPC reference detector layout optimisation, consistent with the other FastSim tools
- CEPCSW Integration is in progress, key algorithm is implemented, i.e., Geometry, Propagation, FastSim, Kalman Fitting

• Next

- Fitting results validation in CEPCSW
- Seeding && TrackFinding Algorithm (CKF in ACTS) integration to CEPCSW

BACKUP

Generally match with Geant4 output. The simplified material distribution is consistent with the actual material.

Implementation

Sub-detector			loc0_res [µm]	loc1_res [µm]	
Barrel	Vertex	1	3	3	pixel
		2	4	4	pixel
		3	4	4	pixel
	SIT 1, 2		5	250	strip
	TPC		100	5000	TPC
	SET		5	250	strip
Endcap	FTD 1, 2		3	3	pixel
	FTD 3, 4, 5		5	250	strip
	ETD		5	250	strip

Silicon module

FATRAS (Fast ATLAS Track Simulation)

to do the simulation

> Smear true position \rightarrow hit

Fast Simulation results are correct

Resolution of vertex and momentum

- > Full simulation data are according to CDR
- > The CEPC physics program requires

$$> \sigma_{1/p_T} = a \oplus \frac{b}{psin^{3/2}\theta}$$
, $a \sim 2 \times 10^{-5}c/GeV$ and $b \sim 1 \times 10^{-3}$

Generally match with full simulations in CDR

Geometry Building Tools Integration

Demonstrator (one layer detector construction)

[zhangjin@lxslc705 Demon]\$ ls -R .: CMakeLists.txt compact src ./compact: Demonstrator.xml elements.xml materials.xml ./src: DemonstratorBarrel_geo.cpp DemonstratorBeamPipe_geo.cpp

• FullSilicon detector - FST2 detector in CDR

[zhangjin@lxslc705 FullSilicon]\$ ls -R .:
CMakeLists.txt compact src
./compact:
cepc cepc_FST2.xml
./compact/cepc:
CEPC_elements.xml cepc_Beampipe.xml cepc_EIT_EOT.xml cepc_VXD_SOT.xml
CEPC_materiais.xmi cepc_Display.xmi cepc_IDs.xmi cepc_readouts.xmi
./src:
CepcDetector
./src/CepcDetector:
CEPC_Common.cpp CEPC_TPC_barrel.cpp CEPC_assambleHelper.hpp CEPC_beampipe.cpp CEPC_layouthelper.hpp CEPC_service.hpp

Acts Tracing geometry constructed correctly in CEPCSW