ATLAS $H \rightarrow \mu\mu$ and its impact on CEPC $H \rightarrow \mu\mu$

- Jie Zhang Shandong University, Qingdao
 - April 16, 2021

Introduction

- observed in LHC. <u>JHEP 08 (2016) 045</u>
- The $H \to \mu \mu$ decay is a unique channel to measure Higgs Yukawa coupling to the second generation fermions.
- Full LHC Run2 Data:
 - integrated luminosity is 139 fb^{-1}

•
$$\sqrt{s} = 13 \text{ TeV}$$

• Impact on CEPC $H \rightarrow \mu\mu$

• The coupling of Higgs with W/Z boson and third generation charged-fermions have been

 $H \rightarrow cc$: CEPC or FCC-ee

- Signal: two opposite charged muons
- Background: Drell-Yan (dominant), $t\bar{t}$ +single-top, WZ/ZZ
- Based on the different production mode of Higgs, use MVA for event classification
 - ggF: 12 categories
 - VBF: 4 categories
 - VH: 3 categories
 - ttH: 1 category
- Fully data-driven method to estimate background
- Use analytic functions to model Signal and Background

April 16, 2021

Analysis Strategy

Analysis Strategy

- Signal: two opposite charged muons
- Background: Drell-Yan (dominant), $t\bar{t}$ +single-top, WZ/ZZ
- Based on the different production mode of Higgs, use MVA for event classification
 - ggF: 12 categories
 - VBF: 4 categories
 - VH: 3 categories
 - ttH: 1 category
- Fully data-driven method to estimate 10^{-1} background
- **10**⁻² • Use analytic functions to model Signal and Background

(X+H

o(pp

Use different event selection criterial for different production mode

ttH Category

- Use BDT (implemented in XGBoost package) to further suppress backgrounds
- Leading two muons as $H \rightarrow \mu \mu$
- 12 variables are used for the BDT

April 16, 2021

Jie Zhang (Shandong University)

VH Categories

- WH/ZH, $(H \rightarrow \mu \mu)$. Expected signal: 4.7 events
- Two BDTs: one BDT for 3 lepton (8 variables) and another BDT for 4 lepton (7 variables)
- Main background: Diboson

Jie Zhang (Shandong University)

2 jet events: events with 2 or more jets

April 16, 2021

VBF/ggF Categories

VBF/ggF Categories

VBF/ggF Categories

Jie Zhang (Shandong University)

April 16, 2021

Jie Zhang (Shandong University)

VBF/ggF Categories

11

Event Categorization

• 20 categories in total: 4 VBF + 12 ggF + 3 VH + 1 ttH

Signal Modeling

• Double-sided Crystal-Ball function is used to model the signal shape, which is described by a Gaussian core of distribution and two asymmetric exponential tails as below:

$$f_{DCB}(m_{\mu\mu}) = \begin{cases} \exp\left[-\left(\frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}}\right)^2/2\right] & \text{if } \alpha_{low} \le \frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}} \\ \frac{\exp\left[-\alpha_{low}^2/2\right]}{\left[\frac{\alpha_{low}}{n_{low}}\left(\frac{n_{low}}{\alpha_{low}} - \alpha_{low} + \frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}}\right)\right]^{n_{low}} & \text{if } \frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}} \le \alpha_{low} \\ \frac{\exp\left[-\alpha_{high}^2/2\right]}{\left[\frac{\alpha_{high}}{n_{high}}\left(\frac{n_{high}}{\alpha_{high}} - \alpha_{high} + \frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}}\right)\right]^{n_{high}} & \text{if } \frac{m_{\mu\mu} - M_{CB}}{\sigma_{CB}} \ge \alpha_{high} \end{cases}$$

- M_{CB} : mean value of the DCB function ٠
- σ_{CB} : width of the DCB function
- α_{low} : threshold for the left low-end tail
- α_{high} : threshold for the right low-end tail
- n_{low} : power in the left low-end tail
- n_{high} : power in the right low-end tail

Background Modeling

- Proposed model with two components: [fix] x [floating]
 - Fixed part (physics motivated): LO $2 \rightarrow 2$ Drell-Yan analytic lineshape
 - $m_{\mu\mu}$ resolution effect included by smearing with Gaussian
- Floating part:

April 16, 2021

Category	Empirical Function	
VBF Very High	Epoly1	-
VBF High	Power0	
VBF Medium	Power0	
VBF Low	Power0	
2-jet Very High	Power1	
2-jet High	Epoly2	
2-jet Medium	Power1	
2-jet Low	Epoly3	
1-jet Very High	Epoly2	
1-jet High	Epoly2	
1-jet Medium	Power1	
1-jet Low	Power1	
0-jet Very High	Power1	Function
0-jet High	Power1 ·	
0-jet Medium	Power1	PowerN
0-jet Low	Epoly3	EncluN
VH4L	Power1	Ерогуп
VH3LH	Epoly2	
VH3LM	Epoly3	
$t \bar{t} H$	Power0	

Phys.Lett.B 812 (2021) 135980

Simultaneously fit with 20 categories to extract signal strength

Jie Zhang (Shandong University)

Statistical Results

- Significance: 2.0σ (1.7σ expected)
- Best fit: $\mu = 1.2 \pm 0.6$

April 16, 2021

Signal Strength in Different Categories

	гтт			1 1	T
V, 139 fb⁻¹		Η -	$\rightarrow \mu\mu$		
SM	Т	otal	Stat.	Syst.	
	5.0 ± 3	.5 (±	3.3,=	± 1.1)	
	-0.4 ± 1	.6 (±	1.5,	± 0.3)	
	2.4 ± 1	.2 (±	1.2,=	± 0.3)	
	-0.6 ± 1	.2 (±	1.2,	± 0.3)	
	1.8 ±1	.0 (±	1.0,=	± 0.2)	
	1.2 ±0	.6 (±	0.6,_	⊦0.2 -0.1)	
5	10		15	2	20
	Signal strength				

Higgs Coupling

Jie Zhang (Shandong University)

17

- $H \rightarrow \mu\mu$ is used to probe the Higgs coupling to second generation fermions. • $H \rightarrow \mu\mu$ search with full run2 data. Observed significance: 2σ (1.7 σ expected) • Best-fit combined signal strength: $\mu = 1.2 \pm 0.6$

- Outlook in LHC:
 - Need more data to understand the coupling between Higgs and muons
 - LHC Run 3 will start Feb 2022
- Impact on CEPC $H \rightarrow \mu\mu$:
 - The background is extremely clean.
 - Develop different event selection criterial based on different production mode. Apply MVA method for event categorization.

 - Use profile likelihood method to estimate significance.

Summary

Kunlin Ran' talk: Higgs to dimuon measurement at the CEPC

Backup

ttH BDT Training Variables

Jie Zhang (Shandong University)

p_⊤I₃ [GeV]

200

220

m_{Had-Top} [GeV]

3

3.5

240

VH 3-lepton BDT Training Variables

Jie Zhang (Shandong University)

VH 4-lepton BDT Training Variables

Jie Zhang (Shandong University)

2-jet BDT Training Variables

April 16, 2021

Jie Zhang (Shandong University)

1-jet BDT Training Variables

Jie Zhang (Shandong University)

April 16, 2021

24

0-jet BDT Training Variables

Jie Zhang (Shandong University)

Signal plus Background fits with $\mu = 1.2$

Jie Zhang (Shandong University)

April 16, 2021

26